超前滞后补偿器简述

超前滞后补偿器是一种用于改善控制系统性能的补偿器,通过适当设计超前和滞后部分,可以调节系统的动态响应和稳定性。

超前滞后补偿器的基本原理

1.超前补偿器:增加系统的相位裕度,提高系统的响应速度,减少超调
2.滞后补偿器:提高系统的稳态精度,改善低频增益。

传递函数

通常表示为: G ( s ) = K ( s + z 1 ) ( s + z 2 ) ( s + p 1 ) ( s + p 2 ) G(s)=K\frac{(s+z_1)(s+z_2)}{(s+p_1)(s+p_2)} G(s)=K(s+p1)(s+p2)(s+z1)(s+z2)。对于典型的超前滞后补偿器,零极点关系为:
z1<p1(滞后补偿器部分);z2>p2(超前补偿器部分)。

设计步骤

1.确定设计目标:根据系统的稳态和动态性能要求确定设计目标,如相位裕度、增益裕度、带宽和稳态误差;
2.选择滞后补偿器参数:z1、p1和z2、p2;
3.计算增益K

实例

假设开环传递函数为: G ( s ) = 10 s ( s + 2 ) G(s)=\frac{10}{s(s+2)} G(s)=s(s+2)10
1.确定目标:假设我们需要相位裕度至少45°,稳态误差不超过5%。
2.选择参数:
z1=0.1, p1=0.01; z2=5, p2=50.
4.计算增益K:调整以使得系统在满足目标同时具有足够带宽
补偿器传递函数为: G c ( s ) = K ( s + 0.1 ) ( s + 5 ) ( s + 0.01 ) ( s + 50 ) G_c(s)=K\frac{(s+0.1)(s+5)}{(s+0.01)(s+50)} Gc(s)=K(s+0.01)(s+50)(s+0.1)(s+5)

计算工具

在MATLAB中,可以使用以下代码进行设计和分析:

K = 1;
s = tf('s');
G = 10 / (s * (s + 2));
Gc = K * (s + 0.1) * (s + 5) / ((s + 0.01) * (s + 50));
sys = series(Gc, G);
bode(sys);
margin(sys);

通过不断调整各个参数的值,可以找到最佳参数
在这里插入图片描述

转化为离散状态空间模型

要将超前滞后补偿器转换为离散状态空间模型,我们需要将其传递函数从连续时间域转换到离散时间域。假设采样时间为1e-6s,我们可以使用离散化方法,如双线性变换(Tustin 变换)或零阶保持器(Zero-Order Hold, ZOH),来进行转换。这里,我们将使用 ZOH 方法进行转换。

s = tf('s');
Gc = (s + 0.1) * (s + 5) / ((s + 0.01) * (s + 50));
T_s = 1e-6;%采样时间
Gc_d = c2d(Gc, T_s, 'zoh');%零阶保持方法
[Ad, Bd, Cd, Dd] = ssdata(Gc_d);
Gc_d =
 
    z^2 - 2 z + 1
  ------------------
  z^2 - 2 z + 0.9999
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值