目录
一、机器翻译简介
机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。其目标是实现计算机自动将一种语言翻译成另一种语言,而不需要人类的参与。
机器翻译的核心是翻译模型,它可以基于规则、基于统计或基于神经网络。这些模型都试图找到最佳的翻译,但它们的工作原理和侧重点有所不同。并且在机器翻译中,单独的单词翻译通常是不够的。上下文对于获得准确翻译至关重要。一些词在不同的上下文中可能有不同的含义和翻译。
二、读取和预处理数据
我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。
!tar -xf d2lzh_pytorch.tar
导入所需的Python模块并设置运行环境
import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data
import sys
# sys.path.append("..")
import d2lzh_pytorch as d2l
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(torch.__version__, device)
输出结果:
1.5.0 cpu
接着定义两个辅助函数对后面读取的数据进行预处理。
# 将一个序列中所有的词记录在all_tokens中以便之后构造词典
# 然后在该序列后面添加PAD直到序列长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
# 将当前序列中的词加入到总词表all_tokens中
all_tokens.extend(seq_tokens)
# 在当前序列末尾添加EOS(序列结束标记)
# 并且添加PAD直到序列长度达到max_seq_len
seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
# 将处理后的序列加入到总序列列表all_seqs中
all_seqs.append(seq_tokens)
# 使用所有的词来构造词典,并将所有序列中的词转换为词索引后构造成Tensor返回
def build_data(all_tokens, all_seqs):
# 使用所有的词构建词典vocab
vocab = Vocab.Vocab(collections.Counter(all_tokens),
specials=[PAD, BOS, EOS])
# 将所有序列中的词转换为对应的词索引序列
indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
return vocab, torch.tensor(indices)
为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'
隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len
。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。
def read_data(max_seq_len):
"""
从文件中读取数据,并处理成模型所需的格式。
Args:
- max_seq_len (int): 最大序列长度,超过此长度的样本将被忽略。
Returns:
- in_vocab (Vocab): 输入序列的词典。
- out_vocab (Vocab): 输出序列的词典。
- dataset (TensorDataset): 处理后的数据集,包含处理后的输入序列和输出序列的Tensor。
"""
# 初始化空列表,用于存储tokens和sequences
# in和out分别是input和output的缩写
in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
# 从文件中读取数据
with io.open('fr-en-small.txt') as f:
lines = f.readlines()
# 遍历每一行数据
for line in lines:
# 将输入序列和输出序列分开
in_seq, out_seq = line.rstrip().split('\t')
# 将输入序列和输出序列分割成词列表
in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
# 如果加上EOS后的序列长度超过max_seq_len,则忽略掉此样本
if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
continue
# 处理输入序列和输出序列,将词加入到总tokens列表中,然后添加到总sequences列表中
process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
# 构建输入序列和输出序列的词典及对应的Tensor数据
in_vocab, in_data = build_data(in_tokens, in_seqs)
out_vocab, out_data = build_data(out_tokens, out_seqs)
# 构建TensorDataset,用于返回处理后的数据集
dataset = Data.TensorDataset(in_data, out_data)
return in_vocab, out_vocab, dataset
将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。
max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]
输出结果:
(tensor([ 5, 4, 45, 3, 2, 0, 0]), tensor([ 8, 4, 27, 3, 2, 0, 0]))
三、 含注意力机制的编码器—解码器
3.1 编码器
在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。PyTorch的nn.GRU
实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。
·输入嵌入层(Embedding Layer):
首先,将输入序列中的每个词(或字符)转换为一个密集的向量表示。这通常使用预训练的词向量(如Word2Vec、GloVe)或者通过嵌入层随机初始化并在训练过程中进行优化。
·编码器层(Encoder Layers):
由多层神经网络组成,常见的选择有循环神经网络(RNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)以及基于自注意力机制的Transformer编码器。每一层都会对输入的向量序列进行处理,提取出更高级别的特征。
·上下文向量(Context Vector):
将处理后的特征序列压缩(如取最后一个时间步的输出,或通过某种聚合操作)成一个固定长度的向量,这个向量作为整个输入序列的语义表示
class Encoder(nn.Module):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
drop_prob=0, **kwargs):
super(Encoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)
def forward(self, inputs, state):
# 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
return self.rnn(embedding, state)
def begin_state(self):
return None
下面创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state
就是一个元素,即隐藏状态;如果使用长短期记忆,state
是一个元组,包含两个元素即隐藏状态和记忆细胞。
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)
输出结果:
(torch.Size([7, 4, 16]), torch.Size([2, 4, 16]))
3.2 注意力机制
注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。
我们将实现注意力机制中定义的函数𝑎:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear
实例均不使用偏差。其中函数𝑎𝑎定义里向量𝑣𝑣的长度是一个超参数,即attention_size
。
def attention_model(input_size, attention_size):
model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
nn.Tanh(),
nn.Linear(attention_size, 1, bias=False))
return model
def attention_forward(model, enc_states, dec_state):
"""
enc_states: (时间步数, 批量大小, 隐藏单元个数)
dec_state: (批量大小, 隐藏单元个数)
"""
# 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
e = model(enc_and_dec_states) # 形状为(时间步数, 批量大小, 1)
alpha = F.softmax(e, dim=0) # 在时间步维度做softmax运算
return (alpha * enc_states).sum(dim=0) # 返回背景变量
在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。
seq_len, batch_size, num_hiddens = 10, 4, 8 # 序列长度、批量大小、隐藏单元数
model = attention_model(2*num_hiddens, 10) # 创建注意力模型,输入维度为2*num_hiddens,输出维度为10
enc_states = torch.zeros((seq_len, batch_size, num_hiddens)) # 编码器状态,形状为(seq_len, batch_size, num_hiddens)
dec_state = torch.zeros((batch_size, num_hiddens)) # 解码器初始状态,形状为(batch_size, num_hiddens)
output_shape = attention_forward(model, enc_states, dec_state).shape # 执行注意力前向传播,并获取输出形状
print("Output Shape:", output_shape)
输出结果:
Output Shape: torch.Size([4, 8])
3.3 含注意力机制的解码器
我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。
在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。
class Decoder(nn.Module):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
attention_size, drop_prob=0):
super(Decoder, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_size)
self.attention = attention_model(2*num_hiddens, attention_size)
# GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens,
num_layers, dropout=drop_prob)
self.out = nn.Linear(num_hiddens, vocab_size)
def forward(self, cur_input, state, enc_states):
"""
cur_input shape: (batch, )
state shape: (num_layers, batch, num_hiddens)
"""
# 使用注意力机制计算背景向量
c = attention_forward(self.attention, enc_states, state[-1])
# 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
input_and_c = torch.cat((self.embedding(cur_input), c), dim=1)
# 为输入和背景向量的连结增加时间步维,时间步个数为1
output, state = self.rnn(input_and_c.unsqueeze(0), state)
# 移除时间步维,输出形状为(批量大小, 输出词典大小)
output = self.out(output).squeeze(dim=0)
return output, state
def begin_state(self, enc_state):
# 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
return enc_state
四、训练模型
def batch_loss(encoder, decoder, X, Y, loss):
batch_size = X.shape[0]
enc_state = encoder.begin_state()
enc_outputs, enc_state = encoder(X, enc_state)
# 初始化解码器的隐藏状态
dec_state = decoder.begin_state(enc_state)
# 解码器在最初时间步的输入是BOS
dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
# 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
mask, num_not_pad_tokens = torch.ones(batch_size,), 0
l = torch.tensor([0.0])
for y in Y.permute(1,0): # Y shape: (batch, seq_len)
dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
l = l + (mask * loss(dec_output, y)).sum()
dec_input = y # 使用强制教学
num_not_pad_tokens += mask.sum().item()
# EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
mask = mask * (y != out_vocab.stoi[EOS]).float()
return l / num_not_pad_tokens # 加上详细中文注释
def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
# 初始化优化器,使用Adam优化算法,设置学习率
enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
# 定义损失函数,使用交叉熵损失,并且不进行内部的损失求和
loss = nn.CrossEntropyLoss(reduction='none')
# 创建数据迭代器,从dataset中按批次读取数据,并且打乱顺序
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
# 开始训练循环,遍历每个epoch
for epoch in range(num_epochs):
l_sum = 0.0 # 初始化损失累计值
# 遍历每个批次的数据
for X, Y in data_iter:
enc_optimizer.zero_grad() # 清空编码器梯度
dec_optimizer.zero_grad() # 清空解码器梯度
l = batch_loss(encoder, decoder, X, Y, loss) # 计算当前批次的损失
l.backward() # 反向传播,计算梯度
enc_optimizer.step() # 更新编码器参数
dec_optimizer.step() # 更新解码器参数
l_sum += l.item() # 累加当前批次的损失值
# 每10个epoch打印一次当前的损失值
if (epoch + 1) % 10 == 0:
print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter))) # 打印当前epoch和平均损失
embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)
def translate(encoder, decoder, input_seq, max_seq_len):
in_tokens = input_seq.split(' ') # 将输入序列按空格分割为单词列表
in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1) # 将输入序列扩展到指定的最大长度,并添加EOS和PAD标记
enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # 将输入序列转换为对应的索引,并构建成张量,batch大小为1
enc_state = encoder.begin_state() # 初始化编码器状态
enc_output, enc_state = encoder(enc_input, enc_state) # 使用编码器得到编码器输出和最终状态
dec_input = torch.tensor([out_vocab.stoi[BOS]]) # 将解码器输入初始化为BOS(开始)标记的索引
dec_state = decoder.begin_state(enc_state) # 使用编码器最终状态初始化解码器状态
output_tokens = [] # 初始化输出的单词列表
for _ in range(max_seq_len): # 循环生成每个时间步的输出
dec_output, dec_state = decoder(dec_input, dec_state, enc_output) # 使用解码器得到当前时间步的输出和更新后的解码器状态
pred = dec_output.argmax(dim=1) # 取预测结果中概率最大的单词的索引作为当前时间步的输出
pred_token = out_vocab.itos[int(pred.item())] # 将预测结果的索引转换为对应的单词
if pred_token == EOS: # 当任一时间步搜索出EOS时,输出序列即完成
break
else:
output_tokens.append(pred_token) # 将当前时间步的输出单词加入到输出序列中
dec_input = pred # 将当前时间步的输出作为下一时间步的输入
return output_tokens # 返回生成的输出序列
五、结果评价
评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。
下面来实现BLEU的计算。
def bleu(pred_tokens, label_tokens, k):
# 计算预测和参考标签的长度
len_pred, len_label = len(pred_tokens), len(label_tokens)
# 初始化 BLEU 分数为 exp(min(0, 1 - 参考标签长度 / 预测标记长度))
score = math.exp(min(0, 1 - len_label / len_pred))
# 对于每个 n-gram 的 n,从 1 到 k
for n in range(1, k + 1):
num_matches, label_subs = 0, collections.defaultdict(int)
# 统计参考标签中每个 n-gram 的出现次数
for i in range(len_label - n + 1):
label_subs[''.join(label_tokens[i: i + n])] += 1
# 统计预测标记中与参考标签匹配的 n-gram 数量
for i in range(len_pred - n + 1):
if label_subs[''.join(pred_tokens[i: i + n])] > 0:
num_matches += 1
label_subs[''.join(pred_tokens[i: i + n])] -= 1
# 计算当前 n-gram 的匹配率,并乘以 BLEU 的惩罚系数
score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
return score
定义一个辅助打印函数。
def score(input_seq, label_seq, k):
pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
label_tokens = label_seq.split(' ')
print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
' '.join(pred_tokens)))
预测正确则分数为1。
score('ils regardent .', 'they are watching .', k=2)
输出结果: bleu 1.000, predict: they are watching .
score('ils sont canadienne .', 'they are canadian .', k=2)
输出结果: bleu 0.658, predict: they are russian .
六、小结
- 可以将编码器—解码器和注意力机制应用于机器翻译中。
- BLEU可以用来评价翻译结果。