YOLOv8模型改进 第八讲 添加上下文引导模块 ContextGuided

        随着目标检测技术的不断进步,YOLOv8 作为一个领先的实时目标检测模型,已在多个任务中表现出色。然而,随着应用场景的复杂性增加,如何进一步提高模型的精度和鲁棒性仍然是一个挑战。本文将探讨如何将 CGNet 的上下文引导模块集成到 YOLOv8 中,以提升其在语义分割和目标检测任务中的表现。

ContextGuided概述

        ContextGuided(Context Guided Network)是一种专为语义分割设计的轻量级神经网络。它通过有效的特征提取和上下文信息融合,旨在提升图像分割任务的准确性和效率。以下是 CGNet 的详细介绍,包括其设计理念、结构组成和应用场景。

CG Block 主要由四个部分组成,每个部分在特征提取和融合中扮演着重要角色:

1. 局部特征提取器 floc

        使用常规卷积(Standard Convolution)进行局部特征提取。通过卷积操作捕捉输入特征图中的局部信息,例如边缘、纹理等细节特征。这些局部特征为后续的上下文理解提供基础。

2. 周围上下文特征提取器 fsur

        使用膨胀卷积(Dilated Convolution)进行周围上下文特征提取。膨胀卷积能够在不增加参数数量的情况下扩大感受野,从而捕捉更大范围的上下文信息。这有助于理解图像中的全局结构,尤其在处理复杂场景时。

3. 联合特征提取器 fjoi

        通过简单的拼接层将局部和周围特征结合在一起,然后应用批归一化(Batch Normalization)和 PReLU 激活函数。将局部特征和上下文特征合并,形成联合特征。批归一化有助于加速训练,而 PReLU 激活函数则增强了模型的非线性表达能力。

4. 全局特征提取器 fglo

        通过全局池化层提取特征,然后连接两个全连接层生成一个权重向量。生成的权重向量用于指导联合特征的融合,帮助模型关注重要的特征,并在融合过程中增强有用信息。这一部分使得模型能够结合全局信息,优化分割或检测性能。

 2. 添加ContextGuided模块到YOLOv8中

 接下来,我们将详细介绍如何将ContextGuided集成到 YOLOv8 模型中。

这是我的GitHub代码:tgf123/YOLOv8_improve (github.com)

这是改进讲解:YOLOv8模型改进 第八讲 添加上下文引导模块 ContextGuided_哔哩哔哩_bilibili

2.1  如何添加

        首先,在我上传的代码中yolov8_improve中找到ContextGuided.py代码部分,它包含两个部分一个是ContextGuided.py的核心代码,一个是yolov8模型的配置文件。 

        然后我们在modules文件夹下面创建ContextGuided.py文件,然后将C2f_OAtention的核心代码放入其中

 

    在 task.py文件中导入ContextGuidedBlock_Down,C2f_CGuidedBlock

from ultralytics.nn.modules.ContextGuided import ContextGuidedBlock_Down, C2f_CGuidedBlock

     然后将 ContextGuidedBlock_Down和C2f_CGuidedBlock添加到下面当中

 最后将配置文件复制到下面文件夹下,运行代码跑通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值