YOLOv11模型改进-模块-引入空间池化模块StripPooling 解决遮挡、小目标

         本篇文章将介绍一个新的改进机制——空间池化模块StripPooling,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,我们将解析StripPooling的工作原理,SP模块通过条带池化在水平和垂直方向上捕捉长距离依赖关系,增强全局和局部特征表达。随后,本文将探讨如何将SP模块与YOLOv11相结合,以提升目标检测的性能。

代码:YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve

1. 空间池化模块StripPooling (SP) 结构介绍    

        本文介绍了一种新的空间池化策略,称为Strip Pooling,用于场景解析。以下是其结构和作用的简要总结:

        Strip Pooling Module (SPM):包括两个平行路径,

### YOLOv11Strip Pooling改进方法 #### 一、传统 Strip Pooling 的局限性 传统的 Strip Pooling (SP) 模块虽然能够有效捕捉全局上下文信息,但在处理复杂的视觉场景时仍然存在一定局限性。具体表现为,在高分辨率输入下,标准 SP 模块可能会导致过高的计算成本,并且对于细粒度特征的捕获能力有限[^2]。 #### 二、改进后的 Strip Pooling 设计思路 为了克服上述挑战并提升YOLOv11的表现力,新的 Strip Pooling 实现方案引入了几项关键技术: - **多尺度条带池化**:不再局限于单一尺寸的水平/垂直条带,而是构建一个多尺度框架,允许不同宽度和高度比例的条带共存。这使得网络可以更好地适应各种形状的目标物体。 - **动态调整机制**:基于注意力机制自动学习最优的条带配置参数,从而提高对特定任务需求下的响应速度与精度。此过程可以通过软选择的方式完成,即赋予每个可能的方向一定权重而非硬编码固定方向[^3]。 - **轻量级优化**:利用深度可分离卷积替代常规的大规模二维卷积层,减少参数数量的同时不影响甚至改善最终效果;另外还加入了通道剪枝技术以去除冗余部分,确保整体架构既紧凑又强大[^1]。 ```python import torch.nn as nn class ImprovedStripPooling(nn.Module): def __init__(self, channels=512, scales=[4,8,16], norm_layer=None): super(ImprovedStripPooling, self).__init__() # 动态条带池化的实现细节省略... def forward(self, x): feat_list = [] for scale in self.scales: pooled_x = F.adaptive_avg_pool2d(x, output_size=(scale,scale)) upsampled_pooled_x = F.interpolate(pooled_x, size=x.size()[2:], mode='bilinear', align_corners=True) feat_list.append(upsampled_pooled_x) sp_out = sum(feat_list)/len(feat_list)+x return sp_out ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值