本篇文章将介绍一个新的改进机制——空间池化模块StripPooling,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,我们将解析StripPooling的工作原理,SP模块通过条带池化在水平和垂直方向上捕捉长距离依赖关系,增强全局和局部特征表达。随后,本文将探讨如何将SP模块与YOLOv11相结合,以提升目标检测的性能。
代码:YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve
1. 空间池化模块StripPooling (SP) 结构介绍
本文介绍了一种新的空间池化策略,称为Strip Pooling,用于场景解析。以下是其结构和作用的简要总结:
Strip Pooling Module (SPM):包括两个平行路径,