一、本文介绍
本文记录的是利用自校准模块RCM
优化YOLOv12的目标检测方法研究。RCM
通过矩形自校准函数可以将注意力区域校准得更接近前景对象,有效提高对前景对象的定位能力。本文将其应用在颈部网络上,使模型能够捕获轴向全局上下文信息,并应用于金字塔上下文提取,使模型表现出更高的精度。
专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
本文记录的是利用自校准模块RCM
优化YOLOv12的目标检测方法研究。RCM
通过矩形自校准函数可以将注意力区域校准得更接近前景对象,有效提高对前景对象的定位能力。本文将其应用在颈部网络上,使模型能够捕获轴向全局上下文信息,并应用于金字塔上下文提取,使模型表现出更高的精度。
专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进