YOLO11改进-模块-引入星型运算Star Blocks

        当前网络设计中,“星型运算”(逐元素乘法)的应用原理未被充分探究,潜力有待挖掘。为解决此问题,我们引入 Star Blocks,其内部由 DW - Conv、BN、ReLU 等模块经星型运算连接,各模块有特定参数。同时揭示星型运算可将输入映射到高维非线性特征空间且无需拓宽网络。最终 StarNet 在紧凑结构和高效预算下实现了高性能与低延迟,有效提升了网络性能。本文考虑到YOLO目标检测的C3k2模块在特征融合的时候,高维非线性特征缺失,本文将Star Blocks与C3K2相结合,提出C3k2_StarsBlock模块。

左边是原模型,右边是改进模型

1. 星型运算Star Blocks结构介绍    

        1. 卷积层(Conv):模块中包含卷积层,用于提取特征。不同阶段(stage)的卷积层有不同的参数。例如,图中提到卷积层(Conv)的核大小(ks)为 3,步长(stride)为 2。

        2. 深度可分离卷积(DW - Conv):模块中还包含深度可分离卷积层,用于进一步处理特征。深度可分离卷积层的核大小(ks)为 7,步长(stride)为 1。

        3. 批量归一化(BN)和激活函数(ReLU):在模块中,深度可分离卷积层前后可能会有批量归一化和激活函数操作,用于归一化数据和引入非线性。

        4. 星型运算(element - wise mul.,即星型乘法):这是 Star Blocks 模块的关键操作。星型运算将不同层的特征进行逐元素乘法,从而在不增加网络宽度的情况下,将输入映射到高维非线性特征空间。

2. YOLOv11与星型运算Star Blocks的结合

        1. YOLO目标检测的C3k2模块在特征融合的时候,存在高维非线性特征缺失,本文将Star Blocks与C3K2相结合,提出C3k2_StarsBlock模块。

3. 星型运算Star Blocks代码部分

YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve

视频讲解:YOLOv11模型改进讲解,教您如何修改YOLOv11_哔哩哔哩_bilibili

YOLOv11模型改进讲解,教您如何根据自己的数据集选择最优的模块提升精度_哔哩哔哩_bilibili

 4. 将星型运算Star Blocks引入到YOLOv11中

第一: 将下面的核心代码复制到D:\model\yolov11\ultralytics\change_model路径下,如下图所示。

第二:在task.py中导入C3k2_StarsBlock包

第三:在task.py中的模型配置部分下面代码

    ​​​​​​ 

第四:将模型配置文件复制到YOLOV11.YAMY文件中

     第五:运行成功


from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":

    # 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"D:\model\yolov11\ultralytics\cfg\models\11\yolo11_starnet.yaml")\
        .load(r'D:\model\yolov11\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'D:\model\yolov11\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=300,
                          imgsz=640,
                          batch=64,
                          # cache = False,
                          # single_cls = False,  # 是否是单类别检测
                          # workers = 0,
                         # resume=r'D:/model/yolov8/runs/detect/train/weights/last.pt',
                         #  amp = True
                          )
### StarBlockYOLOv8的集成及应用 #### 集成StarBlockYOLOv8的目标检测框架 StarBlock是一种新型卷积模块设计,旨在通过增强局部特征表达能力来提高模型性能。当考虑将其应用于YOLOv8时,主要关注点在于如何有效地替换原有组件而不影响整体架构稳定性。 对于YOLOv8而言,在骨干网络部分引入StarBlock能够加强早期阶段的空间信息捕捉效率[^1]。具体操作上,可以在Darknet-53或其他轻量化主干网上选择若干层替换成StarBlock单元。这种修有助于善小物体识别精度并减少误检率。 此外,考虑到BiFPN已经在YOLOv8中有良好表现,将StarBlock融入其中也是一种可行策略。即在每次经过BiFPN处理后的多尺度特征图之间加入一层由多个StarBlock组成的过渡模块,从而进一步强化跨层次间的信息交互质量[^3]。 #### 使用说明 为了便于理解和实践上述动,下面给出一段简化版伪代码用于指导开发人员完成初步尝试: ```python from ultralytics import YOLO import torch.nn as nn class StarBlock(nn.Module): def __init__(self, channels): super(StarBlock, self).__init__() # 定义StarBlock内部结构 def forward(self, x): # 实现前向传播逻辑 pass def integrate_starblock(model_architecture='yolov8'): model = YOLO(f'{model_architecture}.yaml') for name, module in model.named_modules(): if isinstance(module, (nn.Conv2d)): # 或者其他指定条件下的层类型 setattr(model, name, StarBlock(channels=module.out_channels)) return model ``` 此段代码展示了如何遍历给定YOLOv8实例内的所有`Conv2d`层,并用自定义的`StarBlock`替代它们。实际项目中可能还需要调整更多细节参数以适应特定应用场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值