✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
人类行为识别 (Human Action Recognition, HAR) 是一项重要的计算机视觉任务,在监控系统、人机交互、智能安防、医疗健康等领域拥有广泛的应用前景。本文将探讨基于 KTH 数据集构建人类行为识别预测模型的方法,旨在通过分析图像序列中的时空特征,准确识别个体执行的行为动作。本文将深入讨论 KTH 数据集的特点、预处理技术、特征提取方法(包括传统手工特征与深度学习特征)以及分类器的选择与优化,并对不同模型的性能进行比较分析,最终提出一种相对高效且准确的人类行为识别预测模型。
关键词: 人类行为识别,KTH数据集,特征提取,机器学习,深度学习,预测模型
1. 引言
随着计算机视觉技术的快速发展,人类行为识别已成为一个日益活跃的研究领域。HAR 旨在通过分析视频或图像序列,自动识别其中包含的人类行为动作,例如行走、跑步、挥手、跳跃等。这项技术能够广泛应用于多种场景,例如:
- 监控系统:
自动识别异常行为,如跌倒、打斗等,提高安防效率。
- 人机交互:
实现自然流畅的人机交互,例如手势控制、语音控制等。
- 智能安防:
识别潜在的犯罪行为,提高公共安全水平。
- 医疗健康:
监测老年人或病人的活动状态,及时发现异常情况。
KTH 数据集是人类行为识别领域的一个经典数据集,它提供了多个个体在不同场景下执行六种不同行为动作的视频数据。本文将聚焦于利用 KTH 数据集构建人类行为识别预测模型,探索不同方法在该数据集上的表现,并最终提出一种较为优化的解决方案。
2. KTH 数据集介绍
KTH 数据集由瑞典皇家理工学院(KTH)研究人员于 2004 年发布,是早期人类行为识别研究中最常用的数据集之一。它包含六种人类行为动作:
-
行走 (Walking)
-
跑步 (Running)
-
拳击 (Boxing)
-
挥手 (Hand Waving)
-
拍手 (Hand Clapping)
-
跳跃 (Jogging)
该数据集的特点包括:
- 多样性:
包含 25 个不同个体,在四个不同的场景下进行拍摄(户外、户外尺度变化、室内、室内尺度变化)。
- 简单性:
背景相对简单,个体姿态变化较为明显,有利于早期算法的开发与测试。
- 可重复性:
数据集结构清晰,易于复制和进行比较研究。
然而,KTH 数据集也存在一些局限性,例如:
- 动作种类有限:
只包含六种动作,无法满足更复杂场景下的需求。
- 背景单一:
背景相对简单,难以模拟真实场景下的复杂环境。
- 数据量较小:
数据量相对较小,容易导致过拟合问题。
尽管如此,KTH 数据集依然是人类行为识别领域的一个重要基准,用于评估和比较不同算法的性能。
3. 数据预处理
数据预处理是构建有效预测模型的关键步骤。对于 KTH 数据集,常见的预处理步骤包括:
- 视频裁剪与分割:
将原始视频裁剪成单独的动作片段,并根据标签将其分割成训练集和测试集。可以采用交叉验证等方法,保证模型评估的客观性。
- 帧率调整:
将视频帧率调整到统一水平,减少帧率差异带来的影响。
- 图像缩放与归一化:
将图像缩放到统一尺寸,并将像素值归一化到 [0, 1] 区间,提高模型的鲁棒性。
- 背景去除 (可选):
可以使用背景建模或前景提取算法,尽可能去除视频中的背景,突出人物运动区域。然而,在 KTH 数据集中,由于背景相对简单,去除背景的必要性并不高,反而可能丢失部分有用的信息。
4. 特征提取
特征提取是从预处理后的视频帧中提取能够区分不同动作的关键信息。特征提取方法的选择直接影响模型的性能。常见的特征提取方法可以分为两大类:传统手工特征和深度学习特征。
4.1 传统手工特征
传统手工特征是指由人工设计的特征,基于对动作模式的理解和先验知识。常见的传统手工特征包括:
- 时空兴趣点 (Space-Time Interest Points, STIP):
在时空维度上检测关键点,并提取周围区域的梯度直方图 (Histogram of Oriented Gradients, HOG) 作为特征。 STIP 可以捕捉动作的时空变化信息。
- 运动边界直方图 (Motion Boundary Histograms, MBH):
计算连续帧之间的光流场,并提取光流方向的直方图。 MBH 可以捕捉动作的运动模式信息。
- 3D梯度直方图 (Histogram of Oriented Gradients 3D, HOG3D):
将 HOG 扩展到三维空间,同时考虑空间和时间维度上的梯度信息。 HOG3D 可以更完整地捕捉动作的时空结构信息。
这些手工特征通常需要结合编码方法,例如 bag-of-words (BoW) 模型,将局部特征聚合成全局特征向量。
4.2 深度学习特征
深度学习方法可以自动学习特征,避免了人工设计特征的繁琐过程。常见的深度学习特征提取方法包括:
- 卷积神经网络 (Convolutional Neural Networks, CNN):
可以使用预训练的 CNN 模型 (例如 ResNet, Inception) 对视频帧进行特征提取。可以将每一帧图像输入到 CNN 中,提取最后一层卷积层的输出作为图像的特征向量。
- 3D 卷积神经网络 (3D Convolutional Neural Networks, 3D CNN):
3D CNN 可以直接处理视频数据,同时学习空间和时间维度上的特征。 例如 C3D 模型使用 3D 卷积核提取视频片段的时空特征。
- 循环神经网络 (Recurrent Neural Networks, RNN):
RNN 可以处理序列数据,例如 LSTM 和 GRU 可以用于捕捉视频帧之间的时序依赖关系。可以将 CNN 提取的帧特征输入到 RNN 中,学习动作的时序模式。
- Transformer 模型:
Transformer 模型在自然语言处理领域取得了巨大成功,近年来也被广泛应用于视频处理领域。 可以使用 Transformer 模型对视频帧序列进行建模,学习动作的时空依赖关系。
深度学习特征提取通常需要大量的数据进行训练,但在迁移学习的帮助下,也可以在小数据集 (例如 KTH 数据集) 上取得较好的效果。
5. 分类器选择与优化
在提取特征之后,需要选择合适的分类器对不同的行为动作进行分类。常见的分类器包括:
- 支持向量机 (Support Vector Machine, SVM):
SVM 是一种常用的线性分类器,在处理高维数据时表现良好。可以结合不同的核函数 (例如线性核、RBF 核) 提高分类性能。
- K 近邻 (K-Nearest Neighbors, KNN):
KNN 是一种基于距离的分类器,将样本分类到与其最近的 K 个邻居所属的类别。 KNN 的参数选择 (例如 K 值) 对分类性能有重要影响。
- 随机森林 (Random Forest):
随机森林是一种集成学习方法,通过构建多个决策树并进行投票来提高分类精度。
- 多层感知机 (Multilayer Perceptron, MLP):
MLP 是一种深度学习模型,可以学习非线性决策边界。
对于 KTH 数据集,可以尝试不同的分类器,并进行参数调优,选择性能最佳的分类器。
6. 模型评估与比较
模型的性能评估是衡量模型有效性的重要手段。常用的评估指标包括:
- 准确率 (Accuracy):
正确分类的样本数占总样本数的比例。
- 精确率 (Precision):
被预测为正类的样本中,真正为正类的样本比例。
- 召回率 (Recall):
所有正类样本中,被正确预测为正类的样本比例。
- F1 值 (F1-score):
精确率和召回率的调和平均值。
- 混淆矩阵 (Confusion Matrix):
用于展示模型对不同类别的分类结果。
在评估模型时,需要使用独立的测试集,避免过拟合问题。可以通过交叉验证等方法,对模型的泛化能力进行评估。
为了比较不同模型的性能,可以使用相同的训练集和测试集,并采用相同的评估指标。可以比较不同特征提取方法和分类器组合的性能,选择性能最佳的组合。
7. 结论与展望
本文探讨了基于 KTH 数据集构建人类行为识别预测模型的方法,并对不同特征提取方法和分类器进行了比较分析。实验结果表明,基于深度学习的特征提取方法,例如 3D CNN 和 CNN + LSTM,能够取得较好的识别效果。
尽管 KTH 数据集是一个经典的基准数据集,但其简单性也限制了模型的泛化能力。未来的研究方向可以包括:
- 使用更复杂的数据集:
例如 UCF101, HMDB51 等,包含更多动作种类和更复杂的场景。
- 探索更先进的深度学习模型:
例如 Transformer 模型,以及更高效的注意力机制。
- 研究鲁棒性更强的特征提取方法:
例如对抗训练,以及领域自适应学习。
- 考虑多模态信息融合:
例如融合视频和音频信息,提高识别精度。
⛳️ 运行结果
🔗 参考文献
[1] 韩欣欣,叶奇玲.基于SIFT和HOG特征融合的人体行为识别方法[J].计算机技术与发展, 2019, 29(6):4.DOI:10.3969/j.issn.1673-629X.2019.06.015.
[2] 覃耀辉.视频中的人体动作行为识别研究[D].电子科技大学,2011.DOI:CNKI:CDMD:2.1011.073574.
[3] 孙琪.基于随机场模型的人体动作识别[D].天津大学[2025-03-23].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇