【模型预测控制MPC】使用二次规划来模拟多输入多输出(MIMO)系统的模型预测控制附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

模型预测控制(Model Predictive Control, MPC)作为一种先进控制策略,近年来在工业过程控制领域得到了广泛的应用。其核心思想在于利用被控对象的数学模型,在每个采样时刻预测系统在未来一段时间内的动态行为,并通过求解一个优化问题来确定当前时刻的最优控制输入。MPC因其能够显式处理系统约束、具有前馈控制功能以及对模型不确定性具有一定的鲁棒性等优点,使其在处理复杂系统,特别是多输入多输出(Multiple-Input Multiple-Output, MIMO)系统时表现出独特的优势。本文将聚焦于使用二次规划(Quadratic Programming, QP)来模拟MIMO系统的模型预测控制过程,深入探讨其原理、实现方法及其在实际应用中的意义。

模型预测控制的基本原理

MPC的基本框架包含以下几个核心要素:

  1. 预测模型(Prediction Model): MPC依赖于一个能够准确描述系统动态行为的数学模型。对于MIMO系统,常见的模型形式包括状态空间模型、传递函数模型或ARX(AutoRegressive with Exogenous Input)模型等。预测模型用于预测系统在未来一段时间(预测时域)内的输出响应。

  2. 滚动优化(Receding Horizon Optimization): 在每个采样时刻,MPC会求解一个基于预测模型的优化问题。该问题旨在最小化一个性能指标(通常是跟踪误差和控制输入能量的加权和),同时满足系统的状态和控制约束。

  3. 滚动实现(Receding Horizon Implementation): 优化问题求解后,MPC只将优化得到的第一个控制输入作用于被控对象。在下一个采样时刻,系统状态被重新测量,预测时域向前滚动,优化问题再次求解,如此循环往复。

多输入多输出(MIMO)系统建模

MIMO系统具有多个输入和多个输出,其动态行为比单输入单输出(SISO)系统复杂得多。对MIMO系统进行准确建模是实现有效MPC的关键。常见的线性MIMO系统模型可以表示为状态空间形式:

x˙(t)=Ax(t)+Bu(t)+Ed(t)

基于二次规划的MPC问题描述

系统约束的处理

MIMO系统的MPC通常需要处理多种约束,包括:

    二次规划求解

    将性能指标和约束结合起来,MIMO系统的MPC问题最终被建模为一个标准的二次规划问题:

    MIMO系统MPC的模拟实现

    在计算机上模拟MIMO系统的MPC过程通常包括以下步骤:

      模拟过程中,可以记录系统的输入、输出和状态变化,以便分析控制器的性能,如跟踪性能、对扰动的抑制能力、约束满足情况等。

      MIMO系统MPC的挑战与讨论

      尽管基于二次规划的MPC在MIMO系统控制中取得了显著成功,但在实际应用中仍面临一些挑战:

      • 模型精度:

         MPC的性能高度依赖于预测模型的准确性。对于复杂的MIMO系统,建立精确模型可能非常困难。模型失配会导致预测误差,影响控制性能甚至导致系统不稳定。

      • 计算负担:

         对于高维度的MIMO系统和较长的预测时域,二次规划问题的规模会很大,求解所需的计算时间可能超过采样周期,导致无法实时实现。

      • 约束可行性:

         在某些情况下,系统约束可能无法同时满足,导致二次规划问题无解。需要设计合适的软约束或者松弛变量来处理约束的可行性问题。

      • 参数整定:

         MPC控制器中的参数较多,如预测时域、控制时域以及权重矩阵等,它们的整定是一个复杂且耗时的过程,需要经验和反复试验。

      针对这些挑战,研究人员提出了许多改进方法,例如:

      • 模型辨识与自适应控制:

         利用在线辨识或自适应控制技术来提高模型精度。

      • 快速二次规划算法:

         开发更高效的二次规划求解算法,或者利用结构特性来简化问题。

      • 显式MPC(Explicit MPC):

         对于某些类型的系统,可以在离线阶段将MPC律表示为一个分段仿射函数,从而在线计算量极小。

      • 鲁棒MPC(Robust MPC):

         考虑模型不确定性或外部扰动的影响,设计具有鲁棒性的MPC控制器。

      结论

      基于二次规划的模型预测控制为MIMO系统提供了一种强大的控制策略。通过将复杂的MIMO控制问题转化为带有约束的二次规划问题,MPC能够有效地处理系统约束,实现良好的跟踪性能和鲁棒性。本文详细阐述了使用二次规划来模拟MIMO系统MPC的原理、建模、问题描述和求解过程,并讨论了其在实际应用中面临的挑战及潜在的改进方向。随着计算能力的不断提升和优化算法的进步,基于二次规划的MPC将在MIMO系统的先进控制领域发挥越来越重要的作用。未来的研究将继续致力于提高MPC的计算效率、鲁棒性以及处理非线性系统的能力,以满足更广泛和更复杂的工业控制需求。

      ⛳️ 运行结果

      🔗 参考文献

      [1] 孔小兵,刘向杰.基于输入输出线性化的连续系统非线性模型预测控制[J].控制理论与应用, 2012, 29(2):217-224.DOI:10.7641/j.issn.1000-8152.2012.2.pcta110510.

      [2] 邹涛,王昕,李少远.基于混合逻辑的非线性系统多模型预测控制[J].自动化学报, 2007, 33(2):5.DOI:10.1360/aas-007-0188.

      [3] 刘向杰,孔小兵.基于输入输出线性化的连续系统非线性模型预测控制[C]//中国过程控制会议.中国自动化学会, 2011.

      📣 部分代码

      🎈 部分理论引用网络文献,若有侵权联系博主删除

       👇 关注我领取海量matlab电子书和数学建模资料 

      🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

      🌈 各类智能优化算法改进及应用
      生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
      🌈 机器学习和深度学习时序、回归、分类、聚类和降维

      2.1 bp时序、回归预测和分类

      2.2 ENS声神经网络时序、回归预测和分类

      2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

      2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

      2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
      2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

      2.7 ELMAN递归神经网络时序、回归\预测和分类

      2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

      2.9 RBF径向基神经网络时序、回归预测和分类

      2.10 DBN深度置信网络时序、回归预测和分类
      2.11 FNN模糊神经网络时序、回归预测
      2.12 RF随机森林时序、回归预测和分类
      2.13 BLS宽度学习时序、回归预测和分类
      2.14 PNN脉冲神经网络分类
      2.15 模糊小波神经网络预测和分类
      2.16 时序、回归预测和分类
      2.17 时序、回归预测预测和分类
      2.18 XGBOOST集成学习时序、回归预测预测和分类
      2.19 Transform各类组合时序、回归预测预测和分类
      方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
      🌈图像处理方面
      图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
      🌈 路径规划方面
      旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
      🌈 无人机应用方面
      无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
      🌈 通信方面
      传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
      🌈 信号处理方面
      信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
      🌈电力系统方面
      微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
      🌈 元胞自动机方面
      交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
      🌈 雷达方面
      卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
      🌈 车间调度
      零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP 

      👇

      评论
      添加红包

      请填写红包祝福语或标题

      红包个数最小为10个

      红包金额最低5元

      当前余额3.43前往充值 >
      需支付:10.00
      成就一亿技术人!
      领取后你会自动成为博主和红包主的粉丝 规则
      hope_wisdom
      发出的红包
      实付
      使用余额支付
      点击重新获取
      扫码支付
      钱包余额 0

      抵扣说明:

      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

      余额充值