【IEEE33节点】电网静态电压稳定性评估方法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电网安全稳定运行是社会经济发展的基石。随着电力需求的日益增长,电网运行越来越接近其稳定极限,电压稳定性问题日益凸显。静态电压稳定性是电网电压稳定性的重要组成部分,它指的是在负荷缓慢变化的情况下,电网维持节点电压稳定的能力。本文将重点探讨基于IEEE 33节点系统的电网静态电压稳定性评估方法,旨在分析不同评估方法在IEEE 33节点系统上的应用效果,并为提高电网安全稳定运行水平提供参考。

一、 电网静态电压稳定性基本概念与评估方法

静态电压稳定性是指在系统参数缓慢变化(如负荷逐渐增加)时,电网维持节点电压在可接受范围内的能力。当负荷继续增加,系统运行达到电压稳定性极限时,任何微小的扰动都可能导致节点电压崩溃,进而引发大面积停电事故。因此,对电网静态电压稳定性进行准确评估至关重要。

目前,常用的静态电压稳定性评估方法主要包括以下几类:

  • 模态分析法 (Modal Analysis): 模态分析法是一种基于潮流计算雅可比矩阵的特征值分析方法。通过计算雅可比矩阵的最小特征值,可以判断系统是否接近电压崩溃点。特征值越小,系统电压稳定性越差。此外,与最小特征值对应的特征向量可以识别影响电压稳定的关键节点和薄弱环节,为制定改善措施提供依据。

  • P-V 曲线法 (P-V Curve Analysis): P-V曲线法通过模拟负荷逐渐增加的过程,绘制节点电压(V)随负荷功率(P)变化的曲线。曲线的转折点 (即"knee point") 通常被认为是电压稳定性极限点。通过观察P-V曲线的形态,可以评估系统的电压稳定性裕度,并了解不同节点对电压稳定性极限的影响。

  • V-Q 灵敏度分析法 (V-Q Sensitivity Analysis): V-Q灵敏度是指节点电压变化量与节点无功功率注入变化量的比值 (dV/dQ)。当V-Q灵敏度为正值时,表明系统运行在稳定状态;当V-Q灵敏度趋于无穷大时,表明系统接近电压崩溃点。通过分析V-Q灵敏度,可以识别对电压稳定性敏感的节点,并制定相应的无功功率补偿策略。

  • 连续潮流法 (Continuation Power Flow, CPF): 连续潮流法是一种克服传统牛顿-拉夫逊潮流计算收敛问题的数值方法。它通过引入参数化技术,可以追踪潮流方程的完整解曲线,包括电压崩溃点之后的非稳定解。因此,CPF可以提供更全面的电压稳定性信息,包括电压稳定极限、电压稳定裕度以及电压崩溃路径。

二、 IEEE 33节点系统介绍

IEEE 33节点系统是一个广泛应用于电力系统研究的标准测试系统,它具有结构简单、节点数量适中等特点,便于研究和验证各种电力系统分析方法。该系统包含33个节点、32条支路和一个发电节点,具有辐射状的结构特点。由于其结构的特殊性,IEEE 33节点系统也更容易受到电压稳定性的影响,特别是在负荷持续增长的情况下。

三、 基于IEEE 33节点系统的静态电压稳定性评估方法应用实例与比较

以下将针对上述几种静态电压稳定性评估方法,结合IEEE 33节点系统,进行应用实例分析,并对各种方法的优缺点进行比较:

  1. 模态分析法在IEEE 33节点系统中的应用:

    • 步骤:

       首先,对IEEE 33节点系统进行潮流计算,得到系统的运行状态。然后,计算潮流方程的雅可比矩阵。接下来,对雅可比矩阵进行特征值分解,得到特征值和特征向量。最后,分析最小特征值及其对应的特征向量,判断系统的电压稳定性,并识别薄弱节点。

    • 结果分析:

       通过模态分析,可以得到IEEE 33节点系统的最小特征值为正数,说明系统当前运行状态是稳定的。但是,随着负荷的增加,最小特征值逐渐减小,表明系统逐渐接近电压稳定性极限。最小特征值对应的特征向量可以显示对电压稳定性影响最大的节点,通常是负荷较重的末端节点。

    • 优点:

       计算速度快,能够识别薄弱节点和环节。

    • 缺点:

       无法提供电压稳定裕度的具体数值,对非线性特性考虑不足。

  2. P-V 曲线法在IEEE 33节点系统中的应用:

    • 步骤:

       选择IEEE 33节点系统的某个关键节点(例如负荷最大的节点),逐渐增加该节点的负荷,并进行潮流计算。记录节点电压随负荷增加的变化情况,绘制P-V曲线。找到P-V曲线的转折点 (knee point),该点对应的负荷功率即为该节点的电压稳定极限。

    • 结果分析:

       P-V曲线显示,随着负荷的增加,节点电压逐渐下降。当负荷增加到一定程度时,节点电压下降速度加快,并最终出现转折点。通过观察P-V曲线的形态,可以评估系统的电压稳定裕度。不同节点的P-V曲线形状不同,反映了不同节点对电压稳定性极限的影响程度不同。

    • 优点:

       直观易懂,能够提供电压稳定裕度的具体数值。

    • 缺点:

       计算量大,需要多次潮流计算。对于复杂系统,难以绘制所有节点的P-V曲线。

  3. V-Q 灵敏度分析法在IEEE 33节点系统中的应用:

    • 步骤:

       对IEEE 33节点系统进行潮流计算,得到系统的运行状态。然后,计算各节点的V-Q灵敏度。可以通过改变节点注入的无功功率,并计算节点电压的变化,得到V-Q灵敏度。

    • 结果分析:

       V-Q灵敏度为正值的节点,表明系统运行在稳定状态。V-Q灵敏度较大的节点,表明其电压对无功功率变化较为敏感,需要重点关注。V-Q灵敏度接近无穷大的节点,表明系统接近电压崩溃点。

    • 优点:

       计算简单,能够识别对电压稳定性敏感的节点。

    • 缺点:

       精度不高,只适用于小扰动分析。

  4. 连续潮流法在IEEE 33节点系统中的应用:

    • 步骤:

       使用连续潮流算法,对IEEE 33节点系统进行潮流计算,模拟负荷逐渐增加的过程。通过参数化技术,可以追踪潮流方程的完整解曲线,包括电压崩溃点之后的非稳定解。

    • 结果分析:

       连续潮流法可以提供更全面的电压稳定性信息,包括电压稳定极限、电压稳定裕度以及电压崩溃路径。它可以显示系统在负荷持续增加的情况下,哪些节点最先崩溃,并预测电压崩溃的传播路径。

    • 优点:

       能够克服传统潮流计算的收敛问题,提供更全面的电压稳定性信息。

    • 缺点:

       计算复杂度高,需要专业的软件工具。

四、 结论与展望

本文分析了基于IEEE 33节点系统的电网静态电压稳定性评估方法,包括模态分析法、P-V曲线法、V-Q灵敏度分析法和连续潮流法。每种方法都有其自身的优缺点,适用于不同的应用场景。

  • 模态分析法

    计算速度快,适用于在线评估和识别薄弱环节,但无法提供电压稳定裕度的具体数值。

  • P-V曲线法

    直观易懂,能够提供电压稳定裕度的具体数值,但计算量大。

  • V-Q灵敏度分析法

    计算简单,适用于小扰动分析,但精度不高。

  • 连续潮流法

    能够提供更全面的电压稳定性信息,但计算复杂度高。

在实际应用中,可以根据具体的需求和系统特点,选择合适的评估方法或组合使用多种方法,以获得更准确的评估结果。例如,可以先使用模态分析法快速识别薄弱环节,然后使用P-V曲线法或连续潮流法对薄弱环节进行详细分析。

未来,随着智能电网技术的不断发展,电网静态电压稳定性评估方法也将朝着更加智能化、精细化的方向发展。例如,可以利用人工智能技术,构建电网电压稳定性预测模型,实现对电压稳定性的实时监控和预警。此外,还可以研究考虑新能源接入的电网电压稳定性评估方法,以适应新能源快速发展的趋势。

⛳️ 运行结果

🔗 参考文献

[1] 张曦,张宁,龙飞,等.分布式电源接入配网对其静态电压稳定性影响多角度研究[J].电力系统保护与控制, 2017, 45(6):6.DOI:10.7667/PSPC160452.

[2] 杨景旭.含分布式电源的配电网静态电压稳定性研究[D].华北电力大学;华北电力大学(北京),2014.DOI:10.7666/d.Y2659008.

[3] 彭光斌,詹红霞,黄培东,等.基于自适应粒子群算法优化DG的配网静态电压稳定性提高策略[J].电力系统保护与控制, 2017, 45(8):7.DOI:10.7667/PSPC160574.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值