【QPSK信号生成】生成正交相移键控信号研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

正交相移键控(Quadrature Phase Shift Keying, QPSK)作为一种重要的数字调制技术,以其相对较高的频谱效率和抗干扰能力,在现代无线通信系统中扮演着至关重要的角色。本文深入研究了QPSK信号的生成原理、实现方法及其关键技术。从理论基础出发,详细阐述了QPSK调制过程中的符号映射、基带信号构造以及载波调制。接着,探讨了基于数字信号处理(DSP)的QPSK信号生成方案,包括数字上变频(DUC)技术和脉冲成形滤波器的设计。最后,对不同生成方案的优缺点进行了分析,并展望了未来的研究方向。本文旨在为理解和实现QPSK信号生成提供理论和实践指导。

关键词: 正交相移键控(QPSK);信号生成;数字调制;符号映射;数字上变频;脉冲成形

1. 引言

随着数字通信技术的飞速发展,对传输带宽的需求日益增长,频谱资源的日益紧张使得如何有效地利用有限的频谱资源成为关键问题。调制技术作为将数字信息转换为适合在物理信道上传输的模拟信号的关键环节,其性能直接影响到通信系统的传输效率、可靠性和抗干扰能力。在众多的数字调制技术中,正交相移键控(QPSK)凭借其在保证误码率性能的同时,相比于二进制相移键控(BPSK)具有双倍的频谱效率,成为了众多无线通信系统,如蜂窝通信(3G, 4G, 5G)、卫星通信和无线局域网(Wi-Fi)等中的主流调制方式之一。

QPSK调制通过将每两位二进制比特映射到一个特定的相位状态来传输信息。具体而言,QPSK利用载波的四个离散相位,通常为 π/4, 3π/4, 5π/4, 7π/4 或 0, π/2, π, 3π/2,来表示四种不同的双比特组合(00, 01, 10, 11)。这种基于相位的调制方式,使得QPSK在一定程度上能够抵抗幅度衰落,同时,正交载波的使用使得同频带内可以传输两个独立的数据流(同相信道和正交信道),从而提高了频谱效率。

QPSK信号的生成是通信系统中发射机端的关键功能模块。传统的模拟调制器实现复杂,且易受环境因素影响。随着数字信号处理技术的飞速发展,基于DSP或FPGA的数字调制器已成为主流。数字调制器具有灵活性高、可编程性强、易于集成以及性能稳定等优点。因此,深入研究QPSK信号的数字生成原理和实现技术具有重要的理论意义和实际应用价值。

本文将系统地研究QPSK信号的生成过程。首先,回顾QPSK调制的理论基础,包括符号映射规则和基带信号的构造。接着,详细探讨基于数字信号处理的QPSK信号生成架构,重点分析数字上变频技术和脉冲成形的作用。最后,对不同的生成方案进行比较分析,并指出未来的研究方向。

2. QPSK调制理论基础

QPSK调制的核心思想是将输入的二进制比特流分组,每两位一组,然后将每组双比特映射到载波的特定相位。这个过程可以分解为以下几个步骤:

2.1 比特分组与符号映射

输入的连续二进制比特流被分成每两比特为一个符号。例如,比特流 01101100... 将被分为 01101100, ... 。

符号映射是将每个双比特组合映射到复平面上的一个星座点。每个星座点对应于一个特定的复数,其幅度和相位决定了调制信号的幅度和相位。常用的QPSK符号映射规则有多种,其中最常见的是格雷码(Gray Coding)。格雷码的优点在于,相邻的星座点之间只改变一个比特,这有助于降低误码率。例如,一种常见的格雷码映射如下:

  • 00 -> 1 + j

  • 01 -> -1 + j

  • 10 -> -1 - j

  • 11 -> 1 - j

另一种常见的映射方式是自然二进码(Natural Binary Coding),例如:

  • 00 -> 1 + j

  • 01 -> 1 - j

  • 10 -> -1 + j

  • 11 -> -1 - j

本文以格雷码映射为例进行讨论,但原理对于其他映射方式同样适用。

2.2 基带信号的构造

基带信号的构造就是将这些离散的复数符号转换为连续的模拟信号,以便进行载波调制。在数字实现中,这通常通过脉冲成形滤波器来完成。脉冲成形滤波器将每个离散符号扩展成一个具有特定波形的脉冲。理想情况下,为了满足奈奎斯特无码间干扰(ISI)准则,可以使用理想的矩形脉冲。然而,矩形脉冲的频谱是无限带宽的,难以实现且容易引起ISI。

2.3 载波调制

QPSK调制是将基带复信号上变频到射频载波上。

3. 基于数字信号处理的QPSK信号生成

现代通信系统中的QPSK信号生成主要采用数字方式实现。基于DSP或FPGA的数字发射机架构具有高度的灵活性和可编程性。图1展示了一个典型的数字QPSK信号生成模块框图。

3.1 比特分组与符号映射

这部分功能是将输入的二进制比特流按照每两位一组进行分组,并根据预设的符号映射规则(如格雷码)生成对应的复数符号序列。在数字系统中,这通常通过查找表或逻辑电路来实现。

3.2 数字脉冲成形滤波

常用的数字脉冲成形滤波器包括数字升余弦滤波器、数字根升余弦滤波器等。根升余弦滤波器通常在发射端和接收端配合使用,实现最优的匹配滤波接收。

3.3 数字上变频(DUC)

数字上变频(DUC)是数字发射机中的关键模块,它将数字基带信号从较低的采样率和基带频率上变频到较高的采样率和中频或射频频率。DUC通常包括插值滤波器、数字混频器和低通滤波器。

  • 插值滤波器:

     脉冲成形滤波器已经完成了上采样,将符号率提升到采样率 FsFs。如果需要将信号上变频到更高的频率或需要更高的采样率进行后续处理,可以再次使用插值滤波器提高采样率。

  • 数字混频器:

     数字混频器用于将数字基带信号与数字载波信号相乘,实现频率搬移。数字载波信号通常

  • 低通滤波器:

     在数字混频后,可能会产生镜像频率成分。虽然在理论上,如果采样率足够高,镜像频率不会对带内信号造成影响,但在实际实现中,为了进一步抑制带外杂散,可以在数字混频后增加一个低通滤波器。然而,更常见的做法是在脉冲成形滤波器中设计其频谱特性,使得在混频后镜像成分位于带宽之外。

4. 关键技术考量

在QPSK信号的数字生成过程中,有几个关键技术需要重点考虑:

4.1 符号映射规则的选择

不同的符号映射规则会影响系统的误码率性能。格雷码因其相邻星座点之间只有一个比特差异,在接收端出现单个符号错误时,只会导致一个比特错误,从而降低误码率。因此,在对误码率要求较高的系统中,通常采用格雷码映射。

4.2 脉冲成形滤波器的设计

脉冲成形滤波器的作用至关重要,它影响着信号的频谱特性和码间干扰。理想的脉冲成形滤波器应满足奈奎斯特无ISI准则,同时具有较低的旁瓣,以便减少对相邻频带的干扰。常用的升余弦滤波器和根升余弦滤波器通过引入滚降系数来平衡频谱效率和对ISI的抑制能力。滚降系数的选择是设计中的一个重要权衡。较小的滚降系数意味着更高的频谱效率,但也对定时同步精度要求更高。

4.3 数字上变频(DUC)的实现

DUC的实现效率和精度直接影响到发射信号的质量。插值滤波器和数字混频器的设计都需要考虑滤波器的阶数、系数精度、NCO的频率分辨率和相位噪声等因素。高效的DUC实现可以降低硬件资源的消耗和功耗。

4.4 定时和同步

虽然QPSK信号生成本身是一个确定的过程,但在实际系统中,其性能会受到定时精度和同步的影响。在数字域,采样时钟的抖动和频率偏移会影响数字信号的频谱特性。在模拟域,数模转换器和射频前端的非线性特性也会引入失真。虽然这些主要在接收端进行补偿,但在生成端也需要采取措施保证信号的质量。例如,使用低抖动时钟源,并对数字信号进行适当的处理以减轻后续模拟链路的非线性影响。

5. 不同生成方案的分析与比较

QPSK信号的数字生成方案可以根据实现平台和具体架构有所差异。

  • 基于通用DSP芯片的实现:

     通用DSP芯片提供了灵活的编程能力,可以方便地实现各种算法,包括符号映射、脉冲成形滤波和DUC。这种方案适用于原型开发和低速应用。然而,由于DSP芯片的时钟频率和并行处理能力有限,对于高速、高带宽的应用可能无法满足实时性要求。

  • 基于FPGA的实现:

     FPGA具有高度的并行处理能力和可编程硬件架构,非常适合实现高速数字信号处理算法。在FPGA上实现QPSK信号生成可以实现高吞吐量和低延迟。许多通信系统的基带处理部分都采用FPGA实现。

  • 基于ASIC的实现:

     对于大规模生产和对成本、功耗有严格要求的应用,可以采用专用集成电路(ASIC)实现QPSK信号生成。ASIC的性能最优,但设计成本高昂,灵活性差。

在DUC的实现方面,可以采用基于CIC(Cascaded Integrator-Comb)滤波器的插值和抽取,以及基于查找表或CORDIC算法的NCO。不同的DUC架构在复杂度、功耗和性能方面有所差异。

6. 结论与未来研究方向

本文对正交相移键控(QPSK)信号的生成进行了深入研究。从理论基础到数字实现,详细阐述了QPSK信号生成的关键环节和技术。理解和掌握QPSK信号的生成原理和实现方法对于设计和开发现代无线通信系统至关重要。

未来的研究方向可以包括:

  • 更高效的数字脉冲成形滤波器设计:

     探索新的滤波器设计方法,在满足频谱要求的同时,进一步降低硬件复杂度。

  • 基于软件定义无线电(SDR)的灵活生成方案:

     研究如何在SDR平台上实现可配置、可重构的QPSK信号生成模块,以适应不同的通信标准和应用场景。

  • 考虑非理想因素的生成:

     研究如何在数字生成过程中补偿或减轻模拟链路的非线性、IQ不平衡等非理想因素的影响。

  • 低功耗QPSK生成技术:

     随着物联网和低功耗通信的发展,研究如何降低QPSK信号生成模块的功耗具有重要意义。

⛳️ 运行结果

🔗 参考文献

[1] 刘斐然,郏帅威,邵雯,等.正交相移键控信号全光再生与组播技术研究[J].中国激光, 2025, 52(10).

[2] 杨雄伟,赵峰.基于开关键控调制的光载太赫兹正交相移键控信号产生[J].光学学报, 2022, 42(8):8.DOI:10.3788/AOS202242.0806002.

[3] 朱航,宋伟,谭铭,等.根升余弦脉冲成型正交相移键控信号关键参数估计[J].探测与控制学报, 2023, 45(2):73-78.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值