【图像分割和识别】活动形状模型 (ASM) 和活动外观模型 (AAM)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

图像分割和识别是计算机视觉领域的核心任务,旨在将数字图像分解为具有语义意义的区域(分割)并对这些区域或整个图像的内容进行分类(识别)。在过去的几十年里,研究人员提出了多种方法来解决这些问题,其中,基于统计形状和纹理模型的活动形状模型(Active Shape Models, ASM)和活动外观模型(Active Appearance Models, AAM)以其强大的建模能力和在特定应用中的优异表现而备受关注。本文将深入探讨ASM和AAM的原理、核心思想、构建过程、应用领域及其优缺点,并对未来的发展方向进行展望。

引言:图像分割与识别的挑战与模型驱动方法的兴起

图像的复杂性和多样性使得图像分割和识别成为一项具有挑战性的任务。光照变化、遮挡、形变、噪声以及目标对象的内部纹理变化等因素都可能对传统基于像素值或简单特征的方法造成干扰。为了应对这些挑战,研究人员开始探索模型驱动的方法,即利用先验知识对目标对象的形状和纹理进行建模,从而引导分割和识别的过程。ASM和AAM正是在这一背景下应运而生,它们通过学习目标对象的典型变异性来提高分割和识别的鲁棒性。

第一部分:活动形状模型(ASM)的原理与实现

1.1 ASM的核心思想:形状的统计建模

ASM的核心思想是将目标对象的形状表示为一个由一系列特定点(称为标志点或特征点)组成的向量,并通过统计分析这些点在大量训练样本中的位置分布,建立一个描述形状变异性的统计模型。这个模型通常基于主成分分析(Principal Component Analysis, PCA)构建,能够捕捉到形状的主要变化模式。

1.2 ASM的构建过程

ASM的构建过程主要包括以下几个步骤:

  • 训练样本的获取与标注:

     收集大量包含目标对象的训练图像,并在每张图像中手工或半自动地标注出预定义的标志点。标志点的选择通常基于对象的关键特征,例如人脸的眼角、鼻尖、嘴角等。

  • 形状对齐:

     由于不同训练样本中的目标对象可能具有不同的尺度、旋转和平移,需要对所有标注的形状进行对齐,以消除这些无关紧扰因素的影响。常用的对齐方法包括普氏分析(Procrustes Analysis)。

  • 形状向量表示:

     对齐后的形状可以表示为一个由所有标志点坐标串联而成的向量。

  • 形状主成分分析(PCA):

     对形状向量集进行PCA分析,得到形状空间的主方向和对应的特征值。主方向代表了形状的主要变化模式,特征值则反映了每个模式的重要性。通过保留前几个具有较大特征值的成分,可以构建一个紧凑的形状模型。

  • 模型构建:

     形状模型可以用一个平均形状向量和一组形状主方向(特征向量)以及对应的方差(特征值)来表示。任何一个合法的形状都可以由平均形状加上这些主方向的线性组合来近似表示。

1.3 ASM的匹配与迭代搜索

构建好ASM模型后,就可以将其应用于新的图像中进行目标对象的分割。匹配过程通常是一个迭代的搜索过程:

  • 初始化:

     在目标图像中对模型进行初步的定位,通常采用基于边缘或特定特征的粗略匹配方法。

  • 局部特征搜索:

     在每个标志点周围的小邻域内搜索与该点对应的局部特征。这些局部特征可以是灰度值、梯度、边缘信息等。通过训练样本中每个标志点周围的局部特征分布统计,可以建立局部特征模型,用于指导搜索过程。

  • 形状更新:

     根据搜索到的每个标志点的最佳匹配位置,计算出新的形状向量。

  • 模型约束:

     将新的形状向量投影到形状模型中,使其满足形状的统计约束。这意味着更新后的形状必须是模型允许的形状变异范围内的形状。这一步通过调整形状参数(PCA系数)来实现,使得投影误差最小。

  • 迭代:

     重复局部特征搜索和形状更新过程,直到形状不再发生显著变化或达到预设的迭代次数。

ASM的匹配过程可以被视为一个局部优化问题,通过迭代地调整模型的形状参数来最大化标志点与局部特征的匹配程度。

1.4 ASM的优缺点

ASM的优点在于其能够有效地利用形状的先验知识,对具有相似形状的对象具有较好的分割能力。通过统计模型,ASM能够处理一定程度的形状变异和噪声。然而,ASM的缺点也比较明显:它主要依赖于边缘和局部特征信息,对图像纹理的变化不够鲁棒;同时,局部搜索容易陷入局部最优解,对初始化位置比较敏感。

第二部分:活动外观模型(AAM)的原理与实现

2.1 AAM的核心思想:形状与纹理的联合建模

为了克服ASM对纹理不敏感的缺点,AAM在ASM的基础上进一步考虑了纹理信息。AAM将目标对象的外观表示为形状和纹理的联合表示,并建立一个描述外观整体变异性的统计模型。

2.2 AAM的构建过程

AAM的构建过程比ASM更为复杂,主要包括以下几个步骤:

  • 训练样本的获取与标注:

     与ASM相同,需要收集大量训练图像并标注标志点。

  • 形状模型构建:

     与ASM相同,通过PCA构建形状模型。

  • 纹理表示与对齐:

     为了对纹理进行统计分析,需要首先将所有训练样本的纹理信息进行归一化和对齐。这通常通过将每个样本的图像进行形状扭曲,使其形状与平均形状对齐来实现。对齐后的图像像素值可以作为纹理向量。

  • 纹理主成分分析(PCA):

     对对齐后的纹理向量集进行PCA分析,得到纹理空间的主方向和对应的特征值。这些主方向代表了纹理的主要变化模式。

  • 联合外观模型构建:

     AAM的关键是将形状模型和纹理模型结合起来。通常通过一个线性模型将形状参数和纹理参数联系起来,形成一个统一的外观模型。这个联合模型能够描述形状和纹理的协同变化。

2.3 AAM的匹配与迭代搜索

AAM的匹配过程与ASM类似,也是一个迭代的搜索过程,但其目标是调整模型的形状和外观参数,使得模型在图像中生成的图像与实际图像最相似。匹配过程通常涉及以下步骤:

  • 初始化:

     与ASM类似,对模型进行初步定位。

  • 模型生成与误差计算:

     根据当前模型的形状和外观参数,生成一个预测的图像(即模型生成图像)。计算生成的图像与实际图像之间的误差(通常使用像素值的平方差或归一化互相关等)。

  • 参数更新:

     根据误差对模型的形状和外观参数进行调整,以减小误差。这一步通常通过优化算法(如梯度下降、牛顿法等)来实现。目标是找到一组形状和外观参数,使得模型生成的图像与实际图像的相似度最大化。

  • 迭代:

     重复模型生成、误差计算和参数更新过程,直到误差收敛或达到预设的迭代次数。

AAM的匹配过程可以被视为一个非线性优化问题,通过迭代地调整模型的形状和外观参数来最小化模型生成图像与实际图像之间的误差。

2.4 AAM的优缺点

AAM的优点在于能够同时建模形状和纹理信息,对外观变化具有更好的鲁棒性。它能够捕捉到目标对象的整体外观特征,因此在人脸识别、表情分析等领域取得了显著的成功。然而,AAM的缺点是其模型构建和匹配过程通常比ASM更复杂,计算量更大。同时,AAM对初始化位置也比较敏感,容易陷入局部最优解。此外,AAM对图像的非线性变化(如复杂的遮挡和形变)的鲁棒性仍然有限。

第三部分:ASM与AAM的应用领域

ASM和AAM在计算机视觉领域有着广泛的应用,尤其是在以下方面:

  • 人脸分析:

     ASM和AAM在人脸检测、人脸对齐、人脸识别、表情分析、年龄和性别估计等方面发挥着重要作用。它们能够准确地定位人脸的关键特征点,并对人脸的外观进行建模,从而实现高精度的分析。

  • 医学图像分析:

     ASM和AAM在医学图像分割和配准方面也有着重要的应用,例如心脏、大脑、骨骼等结构的分割和跟踪。它们能够利用解剖结构的先验知识,提高分割的准确性和鲁棒性。

  • 目标跟踪:

     ASM和AAM可以用于视频中的目标跟踪,通过在连续帧中对目标对象进行建模和匹配,实现稳定可靠的跟踪。

  • 物体识别与三维重建:

     在特定场景下,ASM和AAM也可以用于具有固定形状的物体识别,并可以通过多视角图像重建三维模型。

  • 增强现实与人机交互:

     ASM和AAM可以用于实时的人脸或手势跟踪,从而实现增强现实应用或自然的人机交互界面。

第四部分:ASM与AAM的局限性与未来的发展方向

尽管ASM和AAM在许多领域取得了成功,但它们仍然存在一些局限性:

  • 对复杂形变和遮挡的鲁棒性有限:

     基于线性模型构建的ASM和AAM对复杂的非线性形变和严重的遮挡不够鲁棒。

  • 局部最优问题:

     基于迭代优化的匹配过程容易陷入局部最优解,对初始化位置敏感。

  • 对光照、背景等变化的鲁棒性有限:

     虽然AAM考虑了纹理,但对复杂的光照变化和杂乱的背景仍然不够鲁棒。

  • 模型构建需要大量手工标注:

     构建高质量的ASM和AAM模型需要大量手工标注的训练样本,成本较高。

  • 泛化能力有限:

     构建好的模型通常只能用于训练样本类型相似的目标,对新类型的目标泛化能力较弱。

为了克服这些局限性,未来的发展方向可能包括:

  • 将ASM和AAM与深度学习结合:

     深度学习在特征提取和非线性建模方面具有强大的能力,可以与ASM和AAM结合,例如使用深度学习提取更鲁棒的局部特征,或者使用深度网络学习更复杂的形状和外观模型。

  • 发展更鲁棒的匹配算法:

     研究更先进的优化算法,以提高匹配过程的鲁棒性,减少对初始化位置的依赖。

  • 引入更多的先验知识:

     除了形状和纹理,还可以引入其他先验知识,例如物体部件之间的空间关系、物理约束等,以提高模型的泛化能力和鲁棒性。

  • 自适应模型:

     研究能够根据当前图像信息自适应调整模型的方法,以应对复杂的变化。

  • 无需或少标注的模型构建:

     探索利用无监督或半监督学习方法来构建模型,减少对手工标注的依赖。

结论

活动形状模型(ASM)和活动外观模型(AAM)作为基于统计形状和纹理模型的经典方法,在图像分割和识别领域发挥了重要的作用。它们通过对目标对象的形状和外观进行统计建模,有效地利用了先验知识,在人脸分析、医学图像分析等领域取得了显著的成功。然而,ASM和AAM也面临着对复杂形变、遮挡和光照变化鲁棒性有限等挑战。随着计算机视觉技术的不断发展,将ASM和AAM与深度学习等新技术相结合,并探索更鲁棒的模型构建和匹配方法,将是未来的重要发展方向。通过不断地改进和创新,ASM和AAM及其相关的模型驱动方法将在未来的图像分割和识别应用中继续发挥重要的作用。

⛳️ 运行结果

🔗 参考文献

[1] 陈强.图像分割若干理论方法及应用研究[D].南京理工大学[2025-05-02].DOI:10.7666/d.y1155024.

[2] 王晶,苏光大,刘炯鑫,等.融合改进的ASM和AAM的人脸形状特征点定位算法[J].光电子.激光, 2011, 22(8):4.

[3] 史东承,谢玉鹏,吴莉,et al.基于主动表观模型的人脸图像描述与编码[J].长春工业大学学报:自然科学版, 2006, 27(4):5.DOI:10.3969/j.issn.1674-1374-B.2006.04.014.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值