✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
多相相移键控(MPSK)是一种广泛应用于数字通信系统的高效调制技术。它通过改变载波的相位来携带信息,在有限的带宽内实现了更高的数据传输速率。然而,在实际通信环境中,噪声、干扰和信道衰落等因素会不可避免地影响信号的传输质量,导致接收端发生误码。因此,深入研究MPSK调制下的误码率(Bit Error Rate, BER)性能对于系统设计和优化至关重要。本文旨在通过理论分析和计算机模拟相结合的方式,对MPSK调制在加性高斯白噪声(AWGN)信道下的误码率性能进行全面研究。首先,将从理论上推导MPSK在AWGN信道下的误符号率(Symbol Error Rate, SER)和BER表达式。其次,将详细阐述利用计算机模拟进行MPSK系统误码率仿真的方法和流程。最后,通过对比理论曲线与仿真结果,验证理论模型的准确性,并分析不同调制阶数(M)对误码率性能的影响。
关键词: MPSK;误码率;理论分析;计算机模拟;AWGN信道;调制阶数
第一章 引言
随着数字通信技术的飞速发展,对通信系统传输效率和可靠性的要求日益提高。调制作为数字通信系统中的关键环节,其性能直接决定了系统的整体表现。相移键控(PSK)作为一种基于相位的调制技术,因其恒包络特性和相对简单的实现方式,在无线通信、卫星通信以及数据传输等领域得到了广泛应用。MPSK作为PSK的一种泛化形式,通过增加相位状态的数量,可以在相同的符号周期内传输更多的比特信息,从而有效提升频谱效率。
然而,通信系统在实际工作过程中面临着各种复杂和不确定的因素,其中最主要的是噪声干扰。噪声会叠加在传输信号上,导致接收信号的相位发生偏差,进而引起解调错误,即误码。衡量数字通信系统性能的一个重要指标就是误码率(BER),它表示错误接收的比特数占总发送比特数的比例。因此,深入研究MPSK调制在不同信噪比(Signal-to-Noise Ratio, SNR)条件下的误码率性能具有重要的理论意义和实际价值。
理论分析能够提供系统性能的理想模型,帮助我们理解影响误码率的关键因素,并为系统设计提供指导。然而,理论分析通常基于简化的信道模型和理想的系统假设,可能无法完全反映实际系统的复杂性。计算机模拟则是一种强大的工具,它可以通过构建系统模型并生成大量随机数据进行仿真,从而更接近实际情况地评估系统性能。将理论分析与计算机模拟相结合,可以相互验证,更全面地了解MPSK系统的误码率特性。
本文将聚焦于在AWGN信道下研究MPSK的误码率性能。AWGN信道是一种基本的信道模型,尽管它忽略了衰落和多径等复杂因素,但它是研究数字通信系统基础性能的重要出发点,也是更复杂信道模型分析的基础。通过对AWGN信道下的MPSK误码率进行深入研究,我们可以建立对MPSK性能的基本认识,并在此基础上进一步探索更复杂信道环境下的性能。
第二章 MPSK 调制原理与理论误码率分析
2.1 MPSK 调制原理
MPSK是一种通过改变载波的相位来表示数字信息的调制技术。它将输入的二进制比特序列映射到M个离散的相位状态之一,其中M为2的整数幂(通常为2, 4, 8, 16等)。
2.2 理论误符号率 (SER) 分析
在AWGN信道下,MPSK接收信号的解调通常采用最大似然(Maximum Likelihood, ML)判决。ML判决器选择距离接收到的符号矢量最近的星座点作为判决结果。在AWGN信道中,这等价于选择最小欧几里德距离对应的星座点。
2.3 理论误码率 (BER) 分析
为了最小化误码率,通常采用格雷码进行符号到比特的映射。格雷码的特点是相邻的符号仅有一位比特不同。在采用格雷码的情况下,当发生误符号时,如果误判发生在相邻的星座点之间,则只会引起一个比特错误。由于在高信噪比下,误判最可能发生在相邻星座点之间,因此采用格雷码可以有效降低误码率。
第三章 MPSK 误码率计算机模拟
计算机模拟是评估通信系统性能的重要手段,它能够弥补理论分析在处理复杂信道和系统模型方面的不足。通过构建MPSK系统的仿真模型,并生成大量随机数据进行传输和解调,我们可以统计误码数量,从而估算出在不同信噪比下的误码率。
3.1 仿真系统模型
MPSK误码率仿真的基本系统模型包括以下主要模块:
- 比特源:
生成随机的二进制比特序列。通常采用伪随机二进制序列发生器(PRBS)来产生足够长的随机比特流。
- 比特到符号映射:
将生成的二进制比特序列按照MPSK的规则进行分组,并将每个分组映射到相应的MPSK符号(相位)。通常采用格雷码进行映射。
- 调制器:
根据映射得到的符号,生成对应的MPSK调制信号。在仿真中,通常直接表示为复数形式的符号矢量,其幅值为 EsEs,相位对应于映射得到的相位。
- 解调器:
对接收到的含噪信号进行解调,恢复出对应的符号。在AWGN信道下,通常采用相干解调和ML判决。这可以通过计算接收信号矢量与所有可能发送符号矢量的欧几里德距离,并选择距离最近的符号来实现。
- 符号到比特映射:
将解调得到的符号映射回二进制比特序列。需要与发送端的比特到符号映射采用相同的规则。
- 误码统计:
将解调得到的比特序列与发送端的原始比特序列进行比较,统计错误的比特数量,并计算误码率。
3.2 仿真流程与参数设置
典型的MPSK误码率仿真流程如下:
- 循环遍历信噪比:
对于每一个设定的信噪比点进行以下步骤。
- 生成随机比特:
生成足够数量的随机比特序列。
- 比特到符号映射与调制:
将比特序列映射为MPSK符号,并生成对应的调制信号(复数表示)。
- 加入噪声:
根据当前信噪比计算噪声方差,并生成相应的AWGN噪声,将其叠加到调制信号上。
- 解调与判决:
对接收到的含噪信号进行相干解调和ML判决,得到解调符号。
- 符号到比特映射:
将解调符号映射回比特序列。
- 误码统计:
比较发送比特序列和解调比特序列,统计误码数量。
- 计算误码率:
将统计到的误码数量除以总发送比特数,得到在该信噪比下的误码率。
- 重复实验:
为了提高统计的准确性,对于每个信噪比点,通常需要进行多次独立的仿真实验,并取误码率的平均值。或者,在单次仿真中生成足够长的比特序列,直到统计到足够多的误码。
- 绘制曲线:
将不同信噪比下的误码率结果绘制成BER-SNR曲线。
在进行MPSK误码率仿真时,需要注意以下关键参数设置:
- 仿真比特数或符号数:
仿真数据量应足够大,以确保统计结果具有较高的可信度。在高信噪比下,误码率很低,需要仿真更多的比特才能统计到足够多的误码。通常的做法是设定一个最小误码数阈值,例如100个误码,当统计到的误码数达到该阈值时停止仿真,或在达到最大仿真比特数时停止。
- 伪随机数发生器:
使用高质量的伪随机数发生器来产生比特序列和高斯噪声。
第四章 仿真结果与理论曲线对比分析
本章将展示不同调制阶数(M)下的MPSK误码率仿真结果,并将其与理论曲线进行对比分析。
4.1 仿真环境与参数
-
仿真平台:使用MATLAB或Python等科学计算软件进行仿真。
-
信道模型:AWGN信道。
-
调制阶数:M = 2 (BPSK), M = 4 (QPSK), M = 8 (8PSK), M = 16 (16PSK)。
-
符号到比特映射:格雷码。
-
仿真数据量:对于每个信噪比点,仿真足够多的比特,直到统计到至少1000个误码,或达到最大仿真比特数(例如 $10^6 到 \10^7$ 比特)。
-
多次重复实验:为了提高精度,每个信噪比点可进行多次独立仿真,并取平均。
4.2 仿真结果与理论曲线
-
曲线会呈现下降趋势,即随着信噪比的增加,误码率逐渐降低。这符合直观认识,更高的信噪比意味着更强的抗噪声能力。
-
理论曲线与仿真结果会非常接近,尤其是在高信噪比区域。这表明理论模型的准确性,同时也验证了仿真方法的有效性。在低信噪比区域,由于理论公式是基于高信噪比的近似,可能会出现轻微的偏差,但总体趋势是一致的。
4.3 结果分析
从仿真结果与理论曲线的对比可以看出:
- 理论模型的有效性:
仿真结果与理论曲线高度吻合,验证了AWGN信道下MPSK误码率理论模型的准确性。这说明在理想的AWGN信道假设下,理论分析能够较好地预测MPSK系统的性能。
- 调制阶数的影响:
随着调制阶数M的增加,误码率性能下降。 这是因为MPSK符号之间的相位距离随着M的增加而减小,星座点之间的距离变近。在相同的噪声功率下,相邻星座点更容易发生混淆,从而导致更高的误符号率和误码率。 尽管高阶调制可以提高频谱效率(每个符号传输更多比特),但它是以牺牲抗噪声性能为代价的。
- 能量效率:
这意味着为了保证相同的可靠性,高阶调制需要更高的发送功率或更低的噪声,从而降低了系统的能量效率。
第五章 结论与展望
本文通过理论分析和计算机模拟,对MPSK调制在AWGN信道下的误码率性能进行了研究。我们推导了MPSK的理论误符号率和误码率表达式,并详细阐述了利用计算机进行误码率仿真的方法和流程。通过对比理论曲线与仿真结果,验证了理论模型的准确性,并深入分析了调制阶数对误码率性能的影响。
研究结果表明,在AWGN信道下,MPSK的误码率性能随着信噪比的增加而降低,且理论与仿真结果高度吻合。然而,随着调制阶数M的增加,为了达到相同的误码率水平,需要更高的信噪比。这意味着高阶MPSK在提高频谱效率的同时,会降低能量效率和抗噪声能力。因此,在实际系统设计中,需要根据具体的应用场景和性能要求,在频谱效率和误码率性能之间进行权衡,选择合适的调制阶数。
本文的研究是基于理想的AWGN信道模型。实际通信环境往往更为复杂,存在衰落、多径、干扰等因素。未来的研究可以进一步扩展到以下方面:
- 衰落信道下的MPSK误码率研究:
研究瑞利衰落、莱斯衰落等典型衰落信道对MPSK误码率性能的影响,并分析分集、信道编码等抗衰落技术的效果。
- MPSK在存在干扰时的误码率研究:
分析同频干扰、邻频干扰等对MPSK系统性能的影响,并研究相应的抗干扰技术。
- 联合调制与编码技术:
研究将MPSK与信道编码(如LDPC码、Turbo码)相结合的性能增益,以及编码增益对误码率曲线的影响。
- 非理想因素的影响:
研究相位噪声、载波同步误差、定时同步误差等非理想因素对MPSK误码率的影响。
- 自适应调制:
研究如何根据信道条件动态调整MPSK的调制阶数,以达到更好的系统性能。
⛳️ 运行结果
🔗 参考文献
[1] 李晓光,潘克刚,齐帅,等.基于GNU Radio高阶累计量的MPSK信号分类器设计[J].通信技术, 2018, 51(8):7.DOI:10.3969/j.issn.1002-0802.2018.08.042.
[2] 李昂.紫外MIMO副载波调制技术的研究[D].北京邮电大学,2020.
[3] 付谋,罗义军.MPSK/MQAM符号速率估计算法[J].重庆邮电大学学报:自然科学版, 2019.DOI:10.3979/j.issn.1673-825X.2019.03.014.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇