✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在全球气候变化日益严峻的背景下,构建以新能源为主体的新型电力系统已成为能源转型和实现“双碳”目标的关键举措。风电作为一种重要的可再生能源,具有清洁无碳、资源丰富的优势,但其固有的随机性和波动性给电力系统的安全稳定运行和优化调度带来了严峻挑战。与此同时,电力负荷,特别是随着电动汽车、智能家居等分布式能源和可控负荷的快速发展,也呈现出日益增强的不确定性。源荷两侧的不确定性相互叠加,使得传统基于确定性模型的电力系统调度方法难以适应新形势下的需求。因此,深入研究计及源荷两侧不确定性的含风电电力系统低碳调度具有重要的理论意义和工程实践价值。
本文旨在探讨如何在源荷两侧不确定性的影响下,构建更加鲁棒和高效的电力系统低碳调度策略。我们将首先分析风电出力和负荷预测误差的特点及其对电力系统运行的影响,然后回顾现有解决不确定性问题的调度方法,并重点阐述计及源荷两侧不确定性的低碳调度模型构建思路和关键技术。最后,将对未来的研究方向进行展望。
一、源荷两侧不确定性的特点及其影响
风电出力受气象条件影响显著,具有间歇性、波动性和不可预测性。风速、风向、温度等因素的微小变化都会导致风电出力的剧烈波动。虽然随着预测技术的进步,风电短期预测精度有所提高,但仍存在不可避免的预测误差,特别是在强风、阵风等特殊天气条件下。这些预测误差会直接影响系统的功率平衡,可能导致发电出力不足或过剩,从而威胁系统的运行稳定性和可靠性。
电力负荷的不确定性主要来源于用户行为的随机性、气象因素(如温度对制冷/制热负荷的影响)、经济波动以及近年来分布式能源和可控负荷的接入。传统负荷通常具有较为规律的日变化和季节变化模式,但随着负荷的多元化和复杂化,其预测误差也在增加。源侧和荷侧的不确定性叠加,使得电力系统的实时功率平衡更加难以维持。当风电出力低于预测值且负荷高于预测值时,系统面临功率短缺的风险;反之,则可能出现功率过剩。
源荷两侧的不确定性对含风电电力系统的低碳调度带来了多重挑战:
- 功率平衡维持困难:
预测误差导致发电出力和负荷需求无法精确匹配,需要预留更多的备用容量来应对不确定性,增加了运行成本。
- 系统运行稳定性下降:
突发的大幅功率波动可能导致频率、电压等运行参数超出安全范围,甚至引发连锁故障。
- 低碳目标实现受阻:
为了应对不确定性,系统往往需要调用更多的传统化石燃料发电机组作为备用,这会增加碳排放,与低碳目标相悖。
- 经济性降低:
额外的备用容量、调峰调频成本以及弃风现象都会增加系统的运行成本。
二、现有解决不确定性问题的调度方法回顾
为了应对电力系统中的不确定性,研究人员和电力调度部门已经发展出多种调度方法,主要包括以下几类:
- 备用容量优化配置:
通过预留足够的旋转备用、非旋转备用和快速响应备用,来应对预测误差。这种方法简单易行,但备用容量的确定通常是基于历史数据和经验,难以精确反映实时不确定性水平,可能导致备用不足或过度。
- 鲁棒优化方法:
鲁棒优化旨在寻找一个在最坏场景下都能满足约束的解。这种方法能够保证系统在一定范围内不确定性下的安全运行,但其解通常较为保守,可能牺牲一定的经济性。
- 随机优化方法:
随机优化利用概率分布来描述不确定性,通过考虑多种可能场景及其发生的概率,寻找期望最优解。这种方法能够更全面地考虑不确定性,但对概率分布的精确性要求较高,且计算复杂度相对较高。
- 基于模型预测控制(MPC)的滚动优化:
MPC是一种在线优化方法,通过不断获取新的预测信息并滚动求解优化问题,能够有效应对动态不确定性。然而,MPC的性能很大程度上取决于预测精度和模型的准确性。
- 数据驱动方法:
随着大数据和人工智能技术的发展,基于机器学习和深度学习的数据驱动方法被应用于不确定性建模和调度决策。这些方法能够从历史数据中学习不确定性的模式和规律,但其可解释性有待提高,且对数据的质量和数量有较高要求。
现有方法在一定程度上缓解了不确定性对电力系统运行的影响,但大多数方法主要关注单侧不确定性(如只考虑风电不确定性),或未能充分考虑源荷两侧不确定性的相互作用。此外,如何在应对不确定性的同时实现低碳目标也是一个亟待解决的问题。
三、计及源荷两侧不确定性的含风电电力系统低碳调度模型构建思路和关键技术
构建计及源荷两侧不确定性的含风电电力系统低碳调度模型,需要综合考虑系统的运行约束、经济目标和低碳目标,并有效地处理风电出力和负荷的随机性。其核心思路在于在满足系统安全运行和可靠供电的前提下,最大化可再生能源的消纳,最小化碳排放和运行成本。
以下是一些关键的模型构建思路和技术:
-
不确定性建模:
- 概率分布建模:
利用历史数据和预测信息,采用概率分布(如正态分布、Weibull分布等)或非参数方法(如核密度估计)来描述风电出力和负荷的预测误差。
- 场景生成:
根据不确定性的概率分布,生成一系列具有代表性的场景,每个场景对应一种可能的源荷组合情况。场景生成技术包括聚类分析、Copula函数建模等,以捕捉源荷不确定性之间的相关性。
- 区间预测:
除了点预测,采用区间预测来提供预测值的置信区间,更能反映不确定性的范围。
- 概率分布建模:
-
低碳调度模型构建:
- 两阶段随机优化:
第一阶段决策(如机组开停机)在不确定性发生前做出,第二阶段决策(如机组出力调整、备用调用)在不确定性发生后根据实际情况调整。通过求解两阶段问题,可以得到在不同场景下的最优调度方案。
- 条件值在险(CVaR)优化:
CVaR是一种风险度量方法,用于衡量在最坏情况下可能发生的损失。将CVaR引入目标函数或约束条件中,可以控制系统在极端不确定性场景下的风险。
- 鲁棒优化与随机优化结合:
结合鲁棒优化的保守性和随机优化的概率信息,构建混合鲁棒-随机优化模型,可以在保证一定鲁棒性的同时,提升经济性。
- 基于人工智能的决策:
利用强化学习等方法,通过与仿真环境的交互学习,直接得到在不同不确定性状态下的最优调度策略。
- 目标函数:
综合考虑系统的运行成本(燃料成本、启停成本、弃风成本等)、碳排放成本以及应对不确定性的备用成本。可以将目标函数设定为最小化总成本,或在满足一定可靠性要求下最小化碳排放。引入碳排放交易机制可以更好地反映碳排放的成本。
- 约束条件:
包括传统的电力系统运行约束,如功率平衡约束、机组爬坡率约束、输电线路容量约束、电压和频率约束等。同时,需要考虑应对不确定性的约束,例如备用容量约束、安全稳定裕度等。
- 处理不确定性的方法:
- 两阶段随机优化:
-
关键技术:
- 高效的场景削减技术:
由于生成的场景数量可能非常庞大,需要采用场景削减技术(如同步回代法、距离度量法)来保留具有代表性的场景,降低计算复杂度。
- 不确定性相关性建模:
深入研究风电出力和负荷不确定性之间的相关性,并将其纳入模型中,可以提高调度的准确性。例如,高温天气可能同时导致风速降低和负荷增加。
- 灵活性的利用:
充分利用电力系统的灵活性资源,包括传统机组的调峰能力、储能系统、需求侧响应以及跨区域互联通道等。这些灵活性资源可以在不确定性发生时快速响应,维持系统平衡。
- 在线滚动调度:
结合MPC的思想,采用在线滚动调度策略,根据实时的风电出力和负荷预测,不断更新调度计划,提高调度的适应性。
- 分布式优化与协调控制:
对于大规模复杂电力系统,采用分布式优化和协调控制方法,将整体调度问题分解为多个子问题,降低计算复杂度,提高实时性。
- 高效的场景削减技术:
四、未来研究方向展望
计及源荷两侧不确定性的含风电电力系统低碳调度是一个复杂且不断发展的研究领域。未来的研究可以聚焦以下几个方面:
- 更精确的不确定性建模:
深入研究风电出力和负荷预测误差的时空相关性,开发更精细的不确定性建模方法,例如基于深度学习的概率预测和不确定性量化。
- 源荷互动下的不确定性协调:
随着柔性负荷和分布式能源的广泛接入,源侧和荷侧的不确定性互动更加复杂。研究如何通过智能调度和市场机制,引导用户参与负荷响应,共同应对不确定性。
- 极端不确定性事件的应对:
考虑极端天气事件、设备故障等低概率高影响的不确定性事件,研究如何提高系统的韧性和抗扰动能力。
- 多能源系统协同优化:
将电力系统与其他能源系统(如热力、天然气、氢能)进行协同优化,通过多能互补和耦合,提高系统整体的灵活性和鲁棒性,进一步降低碳排放。
- 基于人工智能和大数据驱动的智能调度:
进一步探索人工智能和大数据技术在电力系统不确定性调度中的应用,例如利用强化学习实现实时在线的智能调度决策。
- 考虑政策和市场因素:
将碳交易政策、辅助服务市场等市场机制纳入低碳调度模型中,研究如何通过市场信号引导系统朝着低碳化方向发展。
- 可解释性和可靠性评估:
对于基于人工智能的调度方法,研究如何提高其可解释性,并对其在复杂不确定性下的可靠性进行严格评估。
结论
构建计及源荷两侧不确定性的含风电电力系统低碳调度是实现能源转型和“双碳”目标的关键挑战。源荷两侧的不确定性相互叠加,对系统的安全稳定运行、经济性和低碳目标实现提出了严峻考验。本文回顾了现有解决不确定性问题的调度方法,并重点阐述了计及源荷两侧不确定性的低碳调度模型构建思路和关键技术,包括不确定性建模、低碳目标函数构建、鲁棒和随机优化方法以及灵活性资源的利用等。未来的研究需要进一步深化不确定性建模、探索源荷互动下的不确定性协调、应对极端不确定性事件,并结合多能源系统协同优化和人工智能等先进技术,构建更加鲁棒、高效和智能的电力系统低碳调度体系,为新型电力系统的安全可靠运行和绿色低碳发展提供重要支撑。
⛳️ 运行结果
🔗 参考文献
[1] 袁铁江,晁勤,李义岩.面向电力市场的含风电电力系统的环境经济调度优化[J].电网技术, 2009(20):5.DOI:10.1016/j.apm.2007.10.019.
[2] 李鹏波.基于多目标优化的含风电场电力系统环境经济调度研究[D].山东大学,2015.DOI:10.7666/d.Y2792777.
[3] 胡福年,徐伟成,陈军.计及电动汽车充电负荷的风电-光伏-光热联合系统协调调度[J].电力系统保护与控制, 2021, 49(13):11.DOI:10.19783/j.cnki.pspc.201075.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇