sumo与python联合进行交通流控制第一步

本文介绍了如何使用Python的sumolib和traci库与SUMO-GUI进行交互,包括定位配置文件、启动traci服务器、检查SUMO和traci版本的匹配,并演示了基本的接口操作和关闭连接的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先导入必要的安装包
from sumolib import checkBinary  
import traci  

定位好sumo-gui可视化界面的位置和仿真配置文件的位置
sumoBinary = "D:/sumo1.19.0/bin/sumo-gui"
sumoConfig = "D:/sumo1.19.0/file/1.sumocfg"

利用traci接口打开配置文件
traci.start([sumoBinary, "-c", sumoConfig])

然后自动就跳到sumo-gui界面啦,接下来的就是控制逻辑的编写了

这里说明一下sumo的版本要和python里sumolib和traci安装包版本对应,比如我的sumo版本是1.19.0,python里安装的traci版本也是1.19.0,在Anocaonda环境里安装traci包的时候自动就会把sumolib包一起安装,非常方便。

下面给出检查sumo版本和traci版本是否匹配的代码

import traci

# 启动 TraCI 服务器
traci.start(["sumo", "-c", "D:/sumo1.19.0/file/1.sumocfg"])

# 获取 SUMO 版本
sumo_version = traci.getVersion()
print("SUMO version:", sumo_version)

# 获取 TraCI 版本
traci_version = traci.getConnection().getVersion()
print("TraCI version:", traci_version)
# 其他 TraCI 操作

# 关闭 TraCI 连接
traci.close()

### Sumo Logic 和 Python 的集成用于智能控制 #### 背景介绍 Sumo Logic 是一种强大的日志管理和分析工具,能够实时处理大量数据并提供深入洞察。通过将其 Python 集成,可以实现自动化脚本编写、数据分析以及智能化决策支持。这种组合特别适合于需要动态调整参数或基于复杂逻辑执行操作的应用场景。 #### 实现方法概述 以下是将 **Sumo Logic API** **Python** 结合以实现智能控制的主要技术路径: 1. **访问 Sumo Logic 数据** 使用 Sumo Logic 提供的 RESTful API 接口来检索存储的日志或其他形式的数据[^1]。这些接口允许开发者查询特定时间段内的记录,并返回结构化 JSON 格式的响应。 2. **解析和预处理数据** 利用 Python 中丰富的库(如 `pandas` 或 `numpy`),对提取到的信息进行清洗、转换及特征工程处理。这一步骤对于后续建模至关重要[^4]。 3. **构建预测模型** 基于机器学习框架 TensorFlow/Keras 或 Scikit-Learn 创建分类器或者回归算法,从而完成对未来趋势的估计或是异常检测等功能[^3]。 4. **反馈控制系统设计** 将训练好的模型部署至生产环境当中,在线接收新输入的同时给出相应建议动作;并通过调用外部服务API实施更改设置等具体措施达成闭环调节目的[^2]。 下面展示了一个简单的例子程序片段说明如何连接两者之间的工作流程: ```python import requests import json from datetime import timedelta, datetime def fetch_sumologic_data(base_url, access_id, access_key, query_string): headers = { 'Content-Type': 'application/json', 'Authorization': f'Basic {access_id}:{access_key}' } from_time = (datetime.now() - timedelta(days=7)).strftime('%Y-%m-%dT%H:%M:%S') until_time = datetime.now().strftime('%Y-%m-%dT%H:%M:%S') payload = {"query": query_string, "startTime": from_time, "endTime": until_time} response = requests.post(f"{base_url}/search/jobs", data=json.dumps(payload), headers=headers) job_id = response.json()['id'] status_response = check_job_status(base_url, access_id, access_key, job_id) messages = get_messages(base_url, access_id, access_key, job_id) return messages def check_job_status(base_url, access_id, access_key, job_id): url = f'{base_url}/search/jobs/{job_id}' auth_header = {'Authorization': f'Basic {access_id}:{access_key}'} while True: resp = requests.get(url, headers=auth_header).json() state = resp['state'] if state == 'DONE GATHERING RESULTS': break return resp def get_messages(base_url, access_id, access_key, job_id): limit = 1000 offset = 0 all_results = [] while True: results = request_message_segments(base_url, access_id, access_key, job_id, limit, offset) if not results or len(results) < limit: all_results.extend(results) break all_results.extend(results) offset += limit return all_results if __name__ == '__main__': BASE_URL = '<your-sumologic-endpoint>' ACCESS_ID = '<your-access-id>' ACCESS_KEY = '<your-access-key>' logs = fetch_sumologic_data(BASE_URL, ACCESS_ID, ACCESS_KEY, '_sourceCategory="example-category" | parse "* * *" as field1,field2,field3') print(logs[:5]) # Print first five log entries. ``` 此代码展示了如何利用官方文档中的指导原则建立基本功能模块[^1]。它涵盖了从提交搜索请求直到获取最终结果整个过程的关键环节。 --- ###
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值