选频网络与串联谐振回路

选频网络概述

在高频电子线路中,常以选频网络作为负载。选频网络能选出我们需要的频率分量和滤除不需要的频率分量。

选频网络分类:

1、振荡回路(由L、C组成,也称谐振回路):包括单振荡回路耦合振荡回路。其中单振荡回路又分为串联和并联。

2、各种滤波器:例如LC滤波器、石英晶体滤波器、陶瓷滤波器、声表面波滤波器等。

重点讨论振荡回路。


串联谐振回路

单谐振回路:由信号源、电感线圈L、电容器C组成的组成的单个谐振回路。

串联谐振回路:信号源与电容、电感串接,就构成串联谐振回路。

7ace420bdcad42b88b63ca5c5d3434db.png

R为电感线圈的损耗电阻,电容器的损耗一般可以忽略。

 研究上述电路的阻抗:Z=R+jωL+jωC1​=R+j(ωL−1/ωC​)

 阻抗模

eq?%5Cleft%20%7C%20Z%20%5Cright%20%7C%3D%5Csqrt%7BR%5E%7B2%7D+X%5E%7B2%7D%7D%3D%5Csqrt%7BR%5E%7B2%7D+%5Cleft%20%28%20%5Comega%20L-%5Cfrac%7B1%7D%7B%5Comega%20C%7D%20%5Cright%20%29%5E%7B2%7D%7D

阻抗相角eq?%5Cvarphi%20%3Dtg%5E%7B-1%7D%5Cfrac%7BX%7D%7BR%7D

当信号的角频率为eq?%5Comega%20_%7Bo%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7BLC%7D%7D时发生谐振,此时总阻抗最小,为R;当回路出现谐振时的感抗或容抗称之为特性阻抗,用eq?%5Crho表示:

eq?X_%7BL%7D%3DX_%7BC%7D%3D%5Comega%20_%7Bo%7DL%3D%5Cfrac%7B1%7D%7B%5Comega%20_%7Bo%7DC%7D%3D%5Csqrt%7B%5Cfrac%7BL%7D%7BC%7D%7D%3D%5Crho

35992591fe3a4b59967be18542a722ed.png

谐振特性

(1)感性与容性

eq?%5Comega%20%3D%5Comega%20_%7Bo%7Deq?X%3D0纯阻性
eq?%5Comega%20%3E%5Comega%20_%7Bo%7Deq?X%3E0感性
eq?%5Comega%20%3C%5Comega%20_%7Bo%7Deq?X%3C0容性

(2) 谐振时电流值(幅值)最大,且与电压源同相。

(3)在谐振点及其附近,电路电阻R是决定电流大小的主要因素;当频率远离谐振点时,电抗远大于电阻,这时电路电流大小几乎与R没什么关系。

谐振频率

阻抗在某一特定频率上有最小值,而偏离这个频率的时候阻抗将迅速增大,单振荡回路这种特性称为谐振特性,做个特定频率称为谐振频率

eq?f_%7Bo%7D%3D%5Cfrac%7B%5Comega%20_%7Bo%7D%7D%7B2%5Cpi%20%7D%3D%5Cfrac%7B1%7D%7B2%5Cpi%20%5Csqrt%7BLC%7D%7D

 品质因数

谐振时的回路感抗值(容抗值)与回路电阻R的比值定义为回路的品质因数,用Q来表示。它表示回路损耗的大小。

eq?Q%3D%5Cfrac%7B%5Comega%20_%7Bo%7DL%7D%7BR%7D%3D%5Cfrac%7B1%7D%7B%5Comega%20_%7Bo%7DCR%7D%3D%5Cfrac%7B%5Crho%20%7D%7BR%7D%3D%5Cfrac%7B1%7D%7BR%7D%5Ccdot%20%5Csqrt%7B%5Cfrac%7BL%7D%7BC%7D%7D

当谐振时,电感电压为:

e522cdb617114d7988813c09119cfa22.png

电容电压为:

9c42c3f5e47b4b60a4ab78625727f659.png

在谐振时,L与C上的电压大小相等,相位正好相差180° ,相互抵消。电容电感的电压大小也是信号源电压大小的 Q  倍。高频电子线路的Q值往往为几十到几百,因此在选择器件耐压参数时不仅要考虑电压源数值,还要考虑Q值。这是串联谐振时所特有的现象,所以串联谐振又称电压谐振

广义失谐系数

广义失谐是表示回路失谐大小的量。

定义为:

eq?%5Cxi%20%3D%5Cfrac%7BX%7D%7BR%7D%3D%5Cfrac%7B%5Comega%20L-%5Cfrac%7B1%7D%7B%5Comega%20C%7D%7D%7BR%7D%3D%5Cfrac%7B%5Comega%20_%7Bo%7DL%7D%7BR%7D%5Cleft%20%28%20%5Cfrac%7B%5Comega%20%7D%7B%5Comega%20_%7Bo%7D%7D-%5Cfrac%7B%5Comega%20_%7Bo%7D%7D%7B%5Comega%20%7D%20%5Cright%20%29%3DQ%5Cleft%20%28%20%5Cfrac%7B%5Comega%20%7D%7B%5Comega%20_%7Bo%7D%7D-%5Cfrac%7B%5Comega%20_%7Bo%7D%7D%7B%5Comega%20%7D%20%5Cright%20%29

 其中X为失谐时的电抗,括号内为狭义失谐。

eq?%5Comega%20%5Capprox%20%5Comega%20_%7Bo%7D时,即失谐不大时:

eq?%5Cxi%20%5Capprox%20Q_%7Bo%7D%5Ccdot%20%5Cfrac%7B2%5Cbigtriangleup%20%5Comega%20%7D%7B%5Comega%20_%7Bo%7D%7D%3DQ_%7Bo%7D%5Ccdot%20%5Cfrac%7B2%5Cbigtriangleup%20f%7D%7Bf_%7Bo%7D%7D,其中eq?%5Cbigtriangleup%20%5Comega%20%3D%5Comega%20-%5Comega%20_%7Bo%7D

 谐振曲线

通过分析电路结构可得到总阻抗Z的大小,进而得到电流的大小,其电流与角频率ω有关。将电流与ω之间的关系称为谐振曲线。可用N(f)表示谐振曲线的函数。

由于电流的表达式中含有电压这样一个参数,对分析有影响,通常取相对的电流来作为谐振曲线。

eq?N%28f%29%3D%5Cfrac%7B%5Cdot%7BI%7D%7D%7B%5Cdot%7BI_%7Bo%7D%7D%7D%3D%5Cfrac%7BR%7D%7BR+j%28%5Comega%20L-%5Cfrac%7B1%7D%7B%5Comega%20C%7D%29%7D,其中I为失谐处电流,Io为谐振处电流。

引入广义失谐系数可得:eq?N%28f%29%3D%5Cfrac%7B1%7D%7B1+j%5Cxi%20%7D

其模值为:

9b943fff32fd4ca09e6b42071805c7d9.png

得到串联谐振回路的谐振曲线

 5ba29e89ffdd44ac8bf0a7f859353459.png

Q值大,曲线尖锐,选择性好;Q值小,曲线钝,通带宽,选择性差。

 通频带

为了衡量谐振回路的选择性,引入通频带的概念。

定义:回路外加电压的幅值不变时,改变频率,回路电流I下降到Io的0.707倍时所对应的频率范围称为通频带

 f6660f204ff44ae9b610b9d4cb78cbb6.png

 在通频带的边界角频率处,回路中所损耗的功率为谐振时的一半,所以这两个角频率又称为半功率点。在半功率点处,eq?%5Cxi=1或-1。

通频带的绝对值为:eq?2%5Cbigtriangleup%20%5Comega%20_%7B0.7%7D%3D%5Comega%20_%7B2%7D-%5Comega%20_%7B1%7D%3D%5Cfrac%7B%5Comega%20_%7Bo%7D%7D%7BQ%7Deq?2%5Cbigtriangleup%20f_%7B0.7%7D%3Df_%7B2%7D-f_%7B1%7D%3D%5Cfrac%7Bf_%7Bo%7D%7D%7BQ%7D

通频带的相对值为:eq?%5Cfrac%7B2%5Comega%20_%7B0.7%7D%7D%7B%5Comega%20_%7Bo%7D%7D%3D%5Cfrac%7B2f_%7B0.7%7D%7D%7Bf_%7Bo%7D%7D%3D%5Cfrac%7B1%7D%7BQ%7D


 相频特性曲线

指回路电流的相角随频率eq?%5Comega的变化的曲线。

相位特性曲线表达式为:eq?%5Cvarphi%20%3D-arctan%5Cfrac%7BX%7D%7BR%7D%3D-arctan%5Cxi

39f1efd8066442f38dddb0a607996a78.png

串联谐振回路通用相位特性曲线:

d423d010a8d04c56a16d5cf40ce494be.png

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值