求解Jordan标准型的相似变换矩阵涉及到将矩阵 A 通过一个可逆矩阵 P 变换成它的Jordan标准型 J,即:
其中,P 是相似变换矩阵,J 是矩阵 A 的Jordan标准型。
步骤概览
- 找到特征值:计算矩阵 A 的特征值 λ。
- 求解特征向量和广义特征向量:对于每个特征值,找到特征向量和广义特征向量。
- 构造相似变换矩阵 P:将特征向量和广义特征向量按照特定顺序排列,形成矩阵 P。
- 求得Jordan标准型 J:矩阵 J 的每个Jordan块由对应的特征值和广义特征向量决定。
接下来,通过一个具体的例子详细说明。
例:求 A 的Jordan标准型和相似变换矩阵 P
考虑矩阵:
步骤 1: 计算特征值
首先,计算 A 的特征值。特征多项式为:
解得唯一的特征值 λ=5,代数重数为 2。
步骤 2: 求解特征向量和广义特征向量
-
求特征向量:求解
:
由第二行
,
。因此,特征向量为
。
-
求广义特征向量:由于代数重数为 2,而几何重数为 1,因此需要广义特征向量。求解
:
解得
, 因此,广义特征向量为
。
步骤 3: 构造相似变换矩阵 P
相似变换矩阵 P 是由特征向量和广义特征向量组成的矩阵。将特征向量 和广义特征向量
排成列:
步骤 4: 求Jordan标准型 J
因为特征值 λ=5的代数重数为 2,几何重数为 1,因此Jordan块是:
步骤 5: 检验相似变换
我们已经得到:
- P 是变换矩阵。
- J 是Jordan标准型。
验证是否满足 :
- 计算
,由于 P 是单位矩阵,
。
- 确认
:
因此,变换矩阵 P 和Jordan标准型 J 是正确的。
总结
- 通过求解特征向量和广义特征向量,构造相似变换矩阵 P。
- 通过广义特征向量的链,构造Jordan标准型 J。
- 验证
是否成立。