求解Jordan标准型的相似变换矩阵

求解Jordan标准型的相似变换矩阵涉及到将矩阵 A 通过一个可逆矩阵 P 变换成它的Jordan标准型 J,即:

P^{-1} A P = J

其中,P 是相似变换矩阵,J 是矩阵 A 的Jordan标准型。

步骤概览

  1. 找到特征值:计算矩阵 A 的特征值 λ。
  2. 求解特征向量和广义特征向量:对于每个特征值,找到特征向量和广义特征向量。
  3. 构造相似变换矩阵 P:将特征向量和广义特征向量按照特定顺序排列,形成矩阵 P。
  4. 求得Jordan标准型 J:矩阵 J 的每个Jordan块由对应的特征值和广义特征向量决定。

接下来,通过一个具体的例子详细说明。

例:求 A 的Jordan标准型和相似变换矩阵 P

考虑矩阵:

A = \begin{pmatrix} 5 & 4 \\ 0 & 5 \end{pmatrix}

步骤 1: 计算特征值

首先,计算 A 的特征值。特征多项式为:

det(A - \lambda I) = \det\begin{pmatrix} 5 - \lambda & 4 \\ 0 & 5 - \lambda \end{pmatrix} = (5 - \lambda)^2

解得唯一的特征值 λ=5,代数重数为 2。

步骤 2: 求解特征向量和广义特征向量
  1. 求特征向量:求解 (A - 5I)v = 0

    \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0

    由第二行4v_2 = 04v_2 = 0。因此,特征向量为 v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}

  2. 求广义特征向量:由于代数重数为 2,而几何重数为 1,因此需要广义特征向量。求解 (A - 5I)v_2 = v_1:

    \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}

    解得 x_2 = \frac{1}{4}  , 因此,广义特征向量为 v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}

步骤 3: 构造相似变换矩阵 P

相似变换矩阵 P 是由特征向量和广义特征向量组成的矩阵。将特征向量 v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} 和广义特征向量 v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} 排成列:

P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

步骤 4: 求Jordan标准型 J

因为特征值 λ=5的代数重数为 2,几何重数为 1,因此Jordan块是:

J = \begin{pmatrix} 5 & 1 \\ 0 & 5 \end{pmatrix}

步骤 5: 检验相似变换

我们已经得到:

  • P 是变换矩阵。
  • J 是Jordan标准型。

验证是否满足 P^{-1} A P = J

  • 计算 P^{-1},由于 P 是单位矩阵,P^{-1} = P
  • 确认 P^{-1} A P = J

P^{-1} A P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 5 & 4 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 0 & 5 \end{pmatrix}

因此,变换矩阵 P 和Jordan标准型 J 是正确的。

总结

  1. 通过求解特征向量和广义特征向量,构造相似变换矩阵 P。
  2. 通过广义特征向量的链,构造Jordan标准型 J。
  3. 验证 P^{-1} A P = J是否成立。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值