自动驾驶汽车需要很好的感知周围环境,从而进行进一步的分析与计算,比如不同颜色、不同光照条件下的车道线。依靠车道线检测技术,可以引导汽车在正确的区域行驶,为自动驾驶汽车的自动巡航、车道保持、车道超车等行为提供依据,并在汽车偏离车道时为驾驶员提供预警,有助于安全驾驶。
下面介绍几种效果较好的环境感知技术。
Surround-view Fisheye Camera Perceptionfor Automated Driving: Overview, Survey & Challenges
环视鱼眼相机通常用于自动驾驶中的近场感应。车辆四侧的四个鱼眼摄像头足以覆盖车辆周围的360°,捕捉整个近场区域。一些主要的用例是自动停车、交通堵塞辅助和城市驾驶。由于汽车感知的重点是远场感知,因此关于近场感知任务的数据集和工作都很有限。
图1 一个典型的汽车环视系统
与远场相比,由于10cm的高精度物体检测要求和物体的部分可见性,环视感知带来了额外的挑战。由于鱼眼相机有较大的径向畸变,标准算法不能轻易扩展到环视的使用情况。因此,本研究的动机是为研究人员和从业人员提供一个独立的汽车鱼眼相机感知参考。首先,Varun Ravi Kumar和Ciar´an Eising Member等人对常用的鱼眼相机模型进行了统一的分类处理。其次,他们讨论了各种感知任务和现有文献。最后,讨论了挑战和未来的方向。