环境感知系列车道线检测:自动驾驶技术

本文探讨了自动驾驶汽车的环境感知技术,重点是车道线检测和多模态传感器融合。车道线检测对于自动驾驶的自动巡航、车道保持等功能至关重要。文章介绍了环视鱼眼相机在近场感知中的应用及其挑战,以及无人机视角规划在3D重建中的作用。同时,多模态传感器融合在自动驾驶感知任务中展现出强大的潜力,但还面临数据噪声、信息融合和传感器错位等问题。
摘要由CSDN通过智能技术生成

自动驾驶汽车需要很好的感知周围环境,从而进行进一步的分析与计算,比如不同颜色、不同光照条件下的车道线。依靠车道线检测技术,可以引导汽车在正确的区域行驶,为自动驾驶汽车的自动巡航、车道保持、车道超车等行为提供依据,并在汽车偏离车道时为驾驶员提供预警,有助于安全驾驶。

下面介绍几种效果较好的环境感知技术。

Surround-view Fisheye Camera Perceptionfor Automated Driving: Overview, Survey & Challenges

环视鱼眼相机通常用于自动驾驶中的近场感应。车辆四侧的四个鱼眼摄像头足以覆盖车辆周围的360°,捕捉整个近场区域。一些主要的用例是自动停车、交通堵塞辅助和城市驾驶。由于汽车感知的重点是远场感知,因此关于近场感知任务的数据集和工作都很有限。

图1 一个典型的汽车环视系统

与远场相比,由于10cm的高精度物体检测要求和物体的部分可见性,环视感知带来了额外的挑战。由于鱼眼相机有较大的径向畸变,标准算法不能轻易扩展到环视的使用情况。因此,本研究的动机是为研究人员和从业人员提供一个独立的汽车鱼眼相机感知参考。首先,Varun Ravi Kumar和Ciar´an Eising Member等人对常用的鱼眼相机模型进行了统一的分类处理。其次,他们讨论了各种感知任务和现有文献。最后,讨论了挑战和未来的方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值