基础的常用的生信分析方法

1、GO分析

GO(Gene Ontology,基因本体论)是基因本体论联合会建立的一个数据库,把基因的功能分成了三个部分分别是:细胞组分(cellular component, CC)、分子功能(molecular function, MF)生物过程(biological process, BP)。利用GO数据库,我们就可以得到我们的目标基因在CC, MF和BP三个层面上,主要和什么有关。

2、KEGG分析

KEGG数据库:除了对基因本身功能的注释,我们也知道基因会参与人体的各个通路,基于人体通路而形成的数据库就是通路相关的数据库。而KEGG就是通路相关的数据库的一种。其实通路数据库有很多,类似于wikipathway,reactome都是相关的通路数据库。只是因为KEGG比较被人熟知,所以基本上都做这个分析的。

KEGG由三个数据库组成:

        GENES:储存基因组信息,包括完整和部分测序的基因组序列,[从ncbi的GeneBank中搜集而来];

        pathway:用于表示相互作用分子网络的高阶函数,储存高级的功能信息;

        LIGAND:用于化学品收集包含关于化学物质、酶分子、酶反应等信息;

3、GSEA分析(基因集富集分析)

GSEA分析有三个特点:分析的基因集合而不是单个基因、将基因与预定义的基因集进行比较、富集分析。

4、GWAS(全基因组关联分析)

GWAS(全基因组关联分析)是对个体全基因组的基因变异进行观察的实验,目的在于探究是否有基因变异与某个特性相关。GWAS一般关注单核苷酸多态性(SNPs)和人类疾病的关系,理论基础是连锁不平衡理论,该理论假设观察到的SNP和真正的致病基因有着联系。当某一种SNP在患有某种疾病的人群中特别频繁时,相关的基因标记了人类基因的一个区域,真正的致病基因就在该区域中。

精确的表型检测是关联分析的关键,GWAS对数量性状和质量性状都适用。

  • 数量性状:多基因控制,能够测量得到具体数值,符合正态分布;考虑到数量性状受环境影响大,建议将所有材料在同一环境下培育或养殖,或者用多年多点的数据分开分析后综合结果或取BLUP值作为性状值进行关联分析。
  • 质量性状:单基因控制,无法用具体数值衡量,可转换成0、1等表示,需注意每个群体选取近似的样本。
  • 分级性状:表型分布类似质量性状,但实际受多基因控制(数量性状),如抗性性状,因此需要提供每一个个体精确的测量数据。
  • 多指标性状:有多个指标可以同时度量时,找出代表原表型数据变异的主成分因子,作为关联分析的表型数据。

标记开发与分型

  • 实验室常用标记(SSR等)
  • SNP芯片
  • NGS开发SNP、small Indel、CNV、SV标记

传统的GWAS研究只计算单个SNP位点与表型之间的关联性,然后再用Bonferroni校正,通过给定的阈值,筛选出显著的SNP位点。

这样会存在两个问题,第一、Bonferroni校正非常严格,很多对表型也有贡献的位点会因为达不到阈值而被过滤掉。第二、单个位点对表型的解释度很低,尤其是对于高血压这种多基因控制的表型,用一个个单独的位点解释高血压患病风险,显得很单薄。

可以看出GWAS的缺点是忽略了多基因的作用。只有达到阈值的基因变异能被观察到,结果只解释了一小部分表型变异,但是在阈值下的变异也对表型变异做出了贡献。对很多常见的疾病,多基因遗传力比单基因变异发挥更大的作用,这里多基因遗传力包括了很多发挥微小效应的常见基因变异。

5、PRS(多基因风险评分)

PRS(Polygenic risk score)也叫PGS(Polygenic score)是在GWAS基础上发展起来的,PRS(多基因风险评分)是将与某种表型相关联的一组风险SNP的基因型效应加权来计算个体对该种表型(多指患病表型)的倾向的遗传学方法。通过估计多基因变异的累积效应改善了GWAS的缺点。

通俗来说就是,某个人在某项疾病上的多基因风险评分(PRS)越高,此人在以后的生活中患有该疾病的概率越大。但PRS反映的只是一个概率,不是绝对的。绝大部分疾病的发生都是遗传和环境(比如吸烟、饮酒、空气污染等等)交互作用的结果,一般只有当遗传风险和环境风险同时很高时,一个人才会真正发病。因此,PRS的意义就是:我们可以通过较早改变环境中的不利因素来达到遏制高遗传风险疾病的发生。

多基因风险评分主要针对的是多基因遗传疾病,比如二型糖尿病、非酒精性脂肪肝、冠心病、哮喘和一些癌症等,这类疾病的特点是缺乏主效基因(对疾病发生发展有巨大作用的基因)并且可以通过改变环境因素来遏制其发生发展。

总结:多基因风险评分 (PRS) 通过汇总从全基因组关联研究中确定的多个遗传变异的信息来估计个体复杂特征和疾病的遗传可能性。用于预测疾病发生概率。

PRS的三种计算方法:①累加计算法、②平均值法、③标准化法

6、全转录组关联分析(TWAS)

全转录组关联分析(transcriptome-wide association studies,TWAS)是研究与变异性状关联的潜在基因调控机制的宝贵工具。具体来说,TWAS整合了GWAS和基于一组共同变异的表达图谱研究,旨在确定其GReX与表型相关的基因。目前已经开发了各种方法或软件(如PrediXcan,S-prediXcan,Fusion,UTMOST)来执行TWAS综合分析。为了解决不同的生物学问题,每一种分析方法或者软件都有不同的建模假设。在生物医学研究中,TWAS已经成功应用于多种疾病,如精神分裂症,乳腺癌,前列腺癌,低密度脂蛋白胆固醇和克罗恩氏病等疾病中。

TWAS分析优势

与全基因组关联研究相比,TWAS研究策略具有以下优点:

  • 与SNP相比,基于基因的分析具有更低的多重比较压力。分析结果以特定基因而非SNP的形式呈现,基因的生物学意义更为直接,便于后续的功能研究和结果转化。
  • GTEx数据库提供了极为丰富的基因组和转录组数据。研究人员可以使用各种人体组织和细胞数据作为参考面板来构建模型。从GWAS到TWAS的过渡无需额外的样本测试即可实现。
  • TWAS研究中使用了越来越成熟的人工智能分析方法,并且预测结果变得越来越准确。

TWAS 应用领域

  • 肿瘤和复杂疾病易感基因的研究。
  • 分析动植物的特殊性状。
  • 疾病预警,遗传咨询,早期诊断,风险评估和药物选择。

TWAS分析要点

  • 将GTEx作为参考面板(reference panel)训练来自基因型的表达预测模型(training a predictive model);
  • 使用该模型预测GWAS队列中个体的表达;
  • 将该预测结果进行基因表达与性状关联分析。

<think>好的,用户想了解息学中的聚类方法和工具。首先,我需要回忆相关的知识,并结合提供的引用内容来组织答案。 首先,用户提到的引用[1]介绍了K-means和层次聚类,以及它们在基因序列分类、蛋白质性质分析等方面的应用。引用[2]补充了聚类分析的基本概念,而引用[3]则提到了谱聚类和实际代码工具如scikit-learn。这些息应该作为回答的基础。 接下来,我需要明确息学中常用的聚类方法有哪些。根据引用内容,K-means、层次聚类和谱聚类是主要的。需要分别解释每种方法的原理、适用场景,并举例说明在息学中的具体应用,比如基因表达分析或系统发育树构建。 然后,关于工具部分,引用[3]提到了Python的scikit-learn库,而引用[1]和[2]可能涉及到其他工具如R语言中的相关包或SPSS。需要列举常用的软件和工具,比如Cluster 3.0、MEGA等,并说明它们的应用领域,如处理基因数据或系统发育分析。 此外,用户可能对如何选择合适的方法或工具存在疑问,因此需要给出选择建议,比如数据规模、是否需要可视化等。同时,应用场景部分可以更详细地展开,例如在疾病分型中的应用,引用[1]中的功能基因识别可以作为例子。 最后,按照用户要求成相关问题,需要围绕方法、工具、应用和比较展开,确保问题具有针对性,能够帮助用户进一步探索。 检查是否所有数学公式都正确使用$...$或$$...$$格式,比如算法中的距离公式或目标函数。例如,K-means的目标函数是$\sum_{i=1}^k \sum_{x \in C_i} ||x - \mu_i||^2$,需要正确使用行内公式格式。同时,确保引用标识正确添加,如[^1]、[^2]的位置自然。 总结回答结构:先概述聚类分析的重要性,再分方法、工具、应用场景和选择建议,最后相关问题。确保每个部分都有引用支持,并且语言流畅,符合中文表达习惯。</think>在息学中,聚类分析是一种关键的无监督学习方法,用于探索数据内在结构。以下是常用方法及工具的详细说明: --- ### 一、主要聚类方法 1. **K-means聚类** - **原理**:将数据划分为$k$个簇,最小化目标函数$\sum_{i=1}^k \sum_{x \in C_i} ||x - \mu_i||^2$($\mu_i$为簇中心)[^1]。 - **应用**:基因表达谱分析、蛋白质功能分类。例如,通过基因表达量差异对癌症亚型分组。 - **局限性**:需预设簇数量$k$,对噪声敏感。 2. **层次聚类(Hierarchical Clustering)** - **原理**:通过距离矩阵构建树状结构(树状图),支持自底向上(凝聚)或自顶向下(分裂)策略。常用距离度量包括欧氏距离或相关系数[^1]。 - **应用**:构建系统发育树、样本分类。例如,根据基因序列相似性推断物种进化关系。 3. **谱聚类(Spectral Clustering)** - **原理**:基于图论,利用数据相似性矩阵的特征向量进行降维后聚类,适合非凸分布数据[^3]。 - **代码示例**(引用[^3]中的Python实现): ```python sc = SpectralClustering(n_clusters=4, affinity='nearest_neighbors') labels = sc.fit_predict(x) ``` --- ### 二、常用工具与软件 | 工具名称 | 语言/平台 | 特点 | |----------------|---------------|----------------------------------------------------------------------| | **Cluster 3.0** | 独立软件 | 专为基因表达数据分析设计,支持层次聚类和K-means,提供可视化树状图[^1]。 | | **MEGA** | 图形化界面 | 用于系统发育分析,整合多种距离算法和层次聚类方法[^1]。 | | **scikit-learn**| Python库 | 支持K-means、谱聚类等算法,灵活集成物数据处理流程。 | | **SPSS** | 统计分析软件 | 提供探索性聚类分析,适合临床数据或小规模物数据集。 | --- ### 三、应用场景 1. **基因功能注释** 通过共表达基因聚类推测未知基因功能,例如将高表达同步性基因归为同一功能模块。 2. **疾病亚型划分** 利用患者转录组数据聚类,识别不同预后特征的癌症亚型。 3. **进化分析** 基于序列相似性的层次聚类构建系统发育树,推断物种亲缘关系。 --- ### 四、方法选择建议 - **数据规模**:K-means适合大规模数据(时间复杂度$O(nk)$);层次聚类适用于中小规模($O(n^3)$)。 - **分布类型**:谱聚类处理复杂分布更优,K-means假设球形簇[^3]。 - **可视化需求**:层次聚类的树状图可直接展示分类关系。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值