摄像机矩阵由内参矩阵和外参矩阵组成,对摄像机矩阵进行QR分解可以得到内参矩阵和外参矩阵。
内参包括焦距、主点、倾斜系数、畸变系数
(1)
其中,fx,fy为焦距,一般情况下,二者相等,x0、y0为主点坐标(相对于成像平面),s为坐标轴倾斜参数,理想情况下为0
外参包括旋转矩阵R3×3、平移向量T3×1,它们共同描述了如何把点从世界坐标系转换到摄像机坐标系,旋转矩阵描述了世界坐标系的坐标轴相对于摄像机坐标轴的方向,平移向量描述了在摄像机坐标系下空间原点的位置。
分两种
(1)世界坐标系——>像面坐标系
首先将世界坐标系——>摄像机坐标系
已知某点在世界坐标系中的坐标为(Xw, Yw, Zw),由旋转和平移矩阵可得摄像机坐标系和世界坐标系的关系为
(2)
然后将摄像机坐标系——>像面坐标系
(3)
其中[u v 1]T为点在图像坐标系中的坐标,[Xc Yc Zc 1]T为点在摄像机坐标系中的坐标,K为摄像机内参数矩阵。
这样最终可以得到:
(4)
(2)像面坐标系——>世界坐标系
光轴会聚模型:
对于两相机分别有:
(5) (6)
公式56,左边Z应分别为Zc1,Zc2
其中,
(7)
这样可以把(5)(6)写成
(8)
公式8左边Z应为Zc1
(9)
公式9左边Z应为Zc2
将(8)(9)整理可以得到
(10)
以上公式参考评论6楼 wisemanjack
采用最小二乘法求解X,Y,Z,在opencv中可以用solve(A,B,XYZ,DECOMP_SVD)求解
代码如下:
- //opencv2.4.9 vs2012
- #include <opencv2\opencv.hpp>
- #include <fstream>
- #include <iostream>
- using namespace std;
- using namespace cv;
- Point2f xyz2uv(Point3f worldPoint,float intrinsic[3][3],float translation[1][3],float rotation[3][3]);
- Point3f uv2xyz(Point2f uvLeft,Point2f uvRight);
- //图片对数量
- int PicNum = 14;
- //左相机内参数矩阵
- float leftIntrinsic[3][3] = {4037.82450, 0, 947.65449,
- 0, 3969.79038, 455.48718,
- 0, 0, 1};
- //左相机畸变系数
- float leftDistortion[1][5] = {0.18962, -4.05566, -0.00510, 0.02895, 0};
- //左相机旋转矩阵
- float leftRotation[3][3] = {0.912333, -0.211508, 0.350590,
- 0.023249, -0.828105, -0.560091,
- 0.408789, 0.519140, -0.750590};
- //左相机平移向量
- float leftTranslation[1][3] = {-127.199992, 28.190639, 1471.356768};
- //右相机内参数矩阵
- float rightIntrinsic[3][3] = {3765.83307, 0, 339.31958,
- 0, 3808.08469, 660.05543,
- 0, 0, 1};
- //右相机畸变系数
- float rightDistortion[1][5] = {-0.24195, 5.97763, -0.02057, -0.01429, 0};
- //右相机旋转矩阵
- float rightRotation[3][3] = {-0.134947, 0.989568, -0.050442,
- 0.752355, 0.069205, -0.655113,
- -0.644788, -0.126356, -0.753845};
- //右相机平移向量
- float rightTranslation[1][3] = {50.877397, -99.796492, 1507.312197};
- int main()
- {
- //已知空间坐标求成像坐标
- Point3f point(700,220,530);
- cout<<"左相机中坐标:"<<endl;
- cout<<xyz2uv(point,leftIntrinsic,leftTranslation,leftRotation)<<endl;
- cout<<"右相机中坐标:"<<endl;
- cout<<xyz2uv(point,rightIntrinsic,rightTranslation,rightRotation)<<endl;
- //已知左右相机成像坐标求空间坐标
- Point2f l = xyz2uv(point,leftIntrinsic,leftTranslation,leftRotation);
- Point2f r = xyz2uv(point,rightIntrinsic,rightTranslation,rightRotation);
- Point3f worldPoint;
- worldPoint = uv2xyz(l,r);
- cout<<"空间坐标为:"<<endl<<uv2xyz(l,r)<<endl;
- system("pause");
- return 0;
- }
- //************************************
- // Description: 根据左右相机中成像坐标求解空间坐标
- // Method: uv2xyz
- // FullName: uv2xyz
- // Access: public
- // Parameter: Point2f uvLeft
- // Parameter: Point2f uvRight
- // Returns: cv::Point3f
- // Author: 小白
- // Date: 2017/01/10
- // History:
- //************************************
- Point3f uv2xyz(Point2f uvLeft,Point2f uvRight)
- {
- // [u1] |X| [u2] |X|
- //Z*|v1| = Ml*|Y| Z*|v2| = Mr*|Y|
- // [ 1] |Z| [ 1] |Z|
- // |1| |1|
- Mat mLeftRotation = Mat(3,3,CV_32F,leftRotation);
- Mat mLeftTranslation = Mat(3,1,CV_32F,leftTranslation);
- Mat mLeftRT = Mat(3,4,CV_32F);//左相机M矩阵
- hconcat(mLeftRotation,mLeftTranslation,mLeftRT);
- Mat mLeftIntrinsic = Mat(3,3,CV_32F,leftIntrinsic);
- Mat mLeftM = mLeftIntrinsic * mLeftRT;
- //cout<<"左相机M矩阵 = "<<endl<<mLeftM<<endl;
- Mat mRightRotation = Mat(3,3,CV_32F,rightRotation);
- Mat mRightTranslation = Mat(3,1,CV_32F,rightTranslation);
- Mat mRightRT = Mat(3,4,CV_32F);//右相机M矩阵
- hconcat(mRightRotation,mRightTranslation,mRightRT);
- Mat mRightIntrinsic = Mat(3,3,CV_32F,rightIntrinsic);
- Mat mRightM = mRightIntrinsic * mRightRT;
- //cout<<"右相机M矩阵 = "<<endl<<mRightM<<endl;
- //最小二乘法A矩阵
- Mat A = Mat(4,3,CV_32F);
- A.at<float>(0,0) = uvLeft.x * mLeftM.at<float>(2,0) - mLeftM.at<float>(0,0);
- A.at<float>(0,1) = uvLeft.x * mLeftM.at<float>(2,1) - mLeftM.at<float>(0,1);
- A.at<float>(0,2) = uvLeft.x * mLeftM.at<float>(2,2) - mLeftM.at<float>(0,2);
- A.at<float>(1,0) = uvLeft.y * mLeftM.at<float>(2,0) - mLeftM.at<float>(1,0);
- A.at<float>(1,1) = uvLeft.y * mLeftM.at<float>(2,1) - mLeftM.at<float>(1,1);
- A.at<float>(1,2) = uvLeft.y * mLeftM.at<float>(2,2) - mLeftM.at<float>(1,2);
- A.at<float>(2,0) = uvRight.x * mRightM.at<float>(2,0) - mRightM.at<float>(0,0);
- A.at<float>(2,1) = uvRight.x * mRightM.at<float>(2,1) - mRightM.at<float>(0,1);
- A.at<float>(2,2) = uvRight.x * mRightM.at<float>(2,2) - mRightM.at<float>(0,2);
- A.at<float>(3,0) = uvRight.y * mRightM.at<float>(2,0) - mRightM.at<float>(1,0);
- A.at<float>(3,1) = uvRight.y * mRightM.at<float>(2,1) - mRightM.at<float>(1,1);
- A.at<float>(3,2) = uvRight.y * mRightM.at<float>(2,2) - mRightM.at<float>(1,2);
- //最小二乘法B矩阵
- Mat B = Mat(4,1,CV_32F);
- B.at<float>(0,0) = mLeftM.at<float>(0,3) - uvLeft.x * mLeftM.at<float>(2,3);
- B.at<float>(1,0) = mLeftM.at<float>(1,3) - uvLeft.y * mLeftM.at<float>(2,3);
- B.at<float>(2,0) = mRightM.at<float>(0,3) - uvRight.x * mRightM.at<float>(2,3);
- B.at<float>(3,0) = mRightM.at<float>(1,3) - uvRight.y * mRightM.at<float>(2,3);
- Mat XYZ = Mat(3,1,CV_32F);
- //采用SVD最小二乘法求解XYZ
- solve(A,B,XYZ,DECOMP_SVD);
- //cout<<"空间坐标为 = "<<endl<<XYZ<<endl;
- //世界坐标系中坐标
- Point3f world;
- world.x = XYZ.at<float>(0,0);
- world.y = XYZ.at<float>(1,0);
- world.z = XYZ.at<float>(2,0);
- return world;
- }
- //************************************
- // Description: 将世界坐标系中的点投影到左右相机成像坐标系中
- // Method: xyz2uv
- // FullName: xyz2uv
- // Access: public
- // Parameter: Point3f worldPoint
- // Parameter: float intrinsic[3][3]
- // Parameter: float translation[1][3]
- // Parameter: float rotation[3][3]
- // Returns: cv::Point2f
- // Author: 小白
- // Date: 2017/01/10
- // History:
- //************************************
- Point2f xyz2uv(Point3f worldPoint,float intrinsic[3][3],float translation[1][3],float rotation[3][3])
- {
- // [fx s x0] [Xc] [Xw] [u] 1 [Xc]
- //K = |0 fy y0| TEMP = [R T] |Yc| = TEMP*|Yw| | | = —*K *|Yc|
- // [ 0 0 1 ] [Zc] |Zw| [v] Zc [Zc]
- // [1 ]
- Point3f c;
- c.x = rotation[0][0]*worldPoint.x + rotation[0][1]*worldPoint.y + rotation[0][2]*worldPoint.z + translation[0][0]*1;
- c.y = rotation[1][0]*worldPoint.x + rotation[1][1]*worldPoint.y + rotation[1][2]*worldPoint.z + translation[0][1]*1;
- c.z = rotation[2][0]*worldPoint.x + rotation[2][1]*worldPoint.y + rotation[2][2]*worldPoint.z + translation[0][2]*1;
- Point2f uv;
- uv.x = (intrinsic[0][0]*c.x + intrinsic[0][1]*c.y + intrinsic[0][2]*c.z)/c.z;
- uv.y = (intrinsic[1][0]*c.x + intrinsic[1][1]*c.y + intrinsic[1][2]*c.z)/c.z;
- return uv;
- }
matlab或者opencv标定完都是在左相机上建立世界坐标系,于是上面代码对应的改为:
- //左相机旋转矩阵
- float leftRotation[3][3] = {1,0,0, 0,1,0, 0,0,1 };
- //左相机平移向量
- float leftTranslation[1][3] = {0,0,0};
畸变矩阵(默认获得5个即便参数k1,k2,p1,p2,k3)
—————————————————————————————————————————————————
像面坐标系——>世界坐标系还有一种模型是光轴平行模型
双目立体视觉三位测量是基于视差原理:
(11)
(12)
这里,除cx‘外的所有参数都来自于左图像,cx’是主点在右图像上的x坐标。如果主光线在无穷远处相交,那么cx=cx‘,并且右下角的项为0,给定一个二维齐次点和其关联的视差d,我们可以将此点投影到三维中:
(13)
三维坐标就是(X / W , Y / W , Z / W)
- Point p;
- p.x =294,p.y=189;
- cout<<p<< "in world coordinate: " << xyz.at<Vec3f>(p)*16 <<endl;
为什么要乘以16呢?
因为在OpenCV2.0中,BM函数得出的结果是以16位符号数的形式的存储的,出于精度需要,所有的视差在输出时都扩大了16倍(2^4)。其具体代码表示如下:
- dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp)*256 + (d != 0 ? (p-n)*128/d : 0) + 15) >> 4);
可以看到,原始视差在左移8位(256)并且加上一个修正值之后又右移了4位,最终的结果就是左移4位
因此,在实际求距离时,cvReprojectTo3D出来的X/W,Y/W,Z/W都要乘以16 (也就是W除以16),才能得到正确的三维坐标信息
下面是在opencv3.0下实现的该方法的测距(转载)
- /******************************/
- /* 立体匹配和测距 */
- /******************************/
- #include <opencv2/opencv.hpp>
- #include <iostream>
- using namespace std;
- using namespace cv;
- const int imageWidth = 640; //摄像头的分辨率
- const int imageHeight = 480;
- Size imageSize = Size(imageWidth, imageHeight);
- Mat rgbImageL, grayImageL;
- Mat rgbImageR, grayImageR;
- Mat rectifyImageL, rectifyImageR;
- Rect validROIL;//图像校正之后,会对图像进行裁剪,这里的validROI就是指裁剪之后的区域
- Rect validROIR;
- Mat mapLx, mapLy, mapRx, mapRy; //映射表
- Mat Rl, Rr, Pl, Pr, Q; //校正旋转矩阵R,投影矩阵P 重投影矩阵Q
- Mat xyz; //三维坐标
- Point origin; //鼠标按下的起始点
- Rect selection; //定义矩形选框
- bool selectObject = false; //是否选择对象
- int blockSize = 0, uniquenessRatio =0, numDisparities=0;
- Ptr<StereoBM> bm = StereoBM::create(16, 9);
- /*
- 事先标定好的相机的参数
- fx 0 cx
- 0 fy cy
- 0 0 1
- */
- Mat cameraMatrixL = (Mat_<double>(3, 3) << 836.771593170594,0,319.970748854743,
- 0,839.416501863912,228.788913693256,
- 0, 0, 1);
- Mat distCoeffL = (Mat_<double>(5, 1) << 0, 0, 0, 0, 0);
- Mat cameraMatrixR = (Mat_<double>(3, 3) << 838.101721655709,0,319.647150557935,
- 0,840.636812165056,250.655818405938,
- 0, 0, 1);
- Mat distCoeffR = (Mat_<double>(5, 1) << 0, 0, 0, 0, 0);
- Mat T = (Mat_<double>(3, 1) << -39.7389449993974,0.0740619639178984,0.411914303245886);//T平移向量
- Mat rec = (Mat_<double>(3, 1) << -0.00306, -0.03207, 0.00206);//rec旋转向量
- Mat R = (Mat_<double>(3, 3) << 0.999957725513956,-0.00103511880221423,0.00913650447492805,
- 0.00114462826834523,0.999927476064641,-0.0119888463633882,
- -0.00912343197938050,0.0119987974423658,0.999886389470751);//R 旋转矩阵
- /*****立体匹配*****/
- void stereo_match(int,void*)
- {
- bm->setBlockSize(2*blockSize+5); //SAD窗口大小,5~21之间为宜
- bm->setROI1(validROIL);
- bm->setROI2(validROIR);
- bm->setPreFilterCap(31);
- bm->setMinDisparity(0); //最小视差,默认值为0, 可以是负值,int型
- bm->setNumDisparities(numDisparities*16+16);//视差窗口,即最大视差值与最小视差值之差,窗口大小必须是16的整数倍,int型
- bm->setTextureThreshold(10);
- bm->setUniquenessRatio(uniquenessRatio);//uniquenessRatio主要可以防止误匹配
- bm->setSpeckleWindowSize(100);
- bm->setSpeckleRange(32);
- bm->setDisp12MaxDiff(-1);
- Mat disp, disp8;
- bm->compute(rectifyImageL, rectifyImageR, disp);//输入图像必须为灰度图
- disp.convertTo(disp8, CV_8U, 255 / ((numDisparities * 16 + 16)*16.));//计算出的视差是CV_16S格式
- reprojectImageTo3D(disp, xyz, Q, true); //在实际求距离时,ReprojectTo3D出来的X / W, Y / W, Z / W都要乘以16(也就是W除以16),才能得到正确的三维坐标信息。
- xyz = xyz * 16;
- imshow("disparity", disp8);
- }
- /*****描述:鼠标操作回调*****/
- static void onMouse(int event, int x, int y, int, void*)
- {
- if (selectObject)
- {
- selection.x = MIN(x, origin.x);
- selection.y = MIN(y, origin.y);
- selection.width = std::abs(x - origin.x);
- selection.height = std::abs(y - origin.y);
- }
- switch (event)
- {
- case EVENT_LBUTTONDOWN: //鼠标左按钮按下的事件
- origin = Point(x, y);
- selection = Rect(x, y, 0, 0);
- selectObject = true;
- cout << origin <<"in world coordinate is: " << xyz.at<Vec3f>(origin) << endl;
- break;
- case EVENT_LBUTTONUP: //鼠标左按钮释放的事件
- selectObject = false;
- if (selection.width > 0 && selection.height > 0)
- break;
- }
- }
- /*****主函数*****/
- int main()
- {
- /*
- 立体校正
- */
- //Rodrigues(rec, R); //Rodrigues变换
- stereoRectify(cameraMatrixL, distCoeffL, cameraMatrixR, distCoeffR, imageSize, R, T, Rl, Rr, Pl, Pr, Q, CALIB_ZERO_DISPARITY,
- 0, imageSize, &validROIL, &validROIR);
- initUndistortRectifyMap(cameraMatrixL, distCoeffL, Rl, Pr, imageSize, CV_32FC1, mapLx, mapLy);
- initUndistortRectifyMap(cameraMatrixR, distCoeffR, Rr, Pr, imageSize, CV_32FC1, mapRx, mapRy);
- /*
- 读取图片
- */
- rgbImageL = imread("左2.jpg", CV_LOAD_IMAGE_COLOR);
- cvtColor(rgbImageL, grayImageL, CV_BGR2GRAY);
- rgbImageR = imread("右2.jpg", CV_LOAD_IMAGE_COLOR);
- cvtColor(rgbImageR, grayImageR, CV_BGR2GRAY);
- imshow("ImageL Before Rectify", grayImageL);
- imshow("ImageR Before Rectify", grayImageR);
- /*
- 经过remap之后,左右相机的图像已经共面并且行对准了
- */
- remap(grayImageL, rectifyImageL, mapLx, mapLy, INTER_LINEAR);
- remap(grayImageR, rectifyImageR, mapRx, mapRy, INTER_LINEAR);
- /*
- 把校正结果显示出来
- */
- Mat rgbRectifyImageL, rgbRectifyImageR;
- cvtColor(rectifyImageL, rgbRectifyImageL, CV_GRAY2BGR); //伪彩色图
- cvtColor(rectifyImageR, rgbRectifyImageR, CV_GRAY2BGR);
- //单独显示
- //rectangle(rgbRectifyImageL, validROIL, Scalar(0, 0, 255), 3, 8);
- //rectangle(rgbRectifyImageR, validROIR, Scalar(0, 0, 255), 3, 8);
- imshow("ImageL After Rectify", rgbRectifyImageL);
- imshow("ImageR After Rectify", rgbRectifyImageR);
- //显示在同一张图上
- Mat canvas;
- double sf;
- int w, h;
- sf = 600. / MAX(imageSize.width, imageSize.height);
- w = cvRound(imageSize.width * sf);
- h = cvRound(imageSize.height * sf);
- canvas.create(h, w * 2, CV_8UC3); //注意通道
- //左图像画到画布上
- Mat canvasPart = canvas(Rect(w * 0, 0, w, h)); //得到画布的一部分
- resize(rgbRectifyImageL, canvasPart, canvasPart.size(), 0, 0, INTER_AREA); //把图像缩放到跟canvasPart一样大小
- Rect vroiL(cvRound(validROIL.x*sf), cvRound(validROIL.y*sf), //获得被截取的区域
- cvRound(validROIL.width*sf), cvRound(validROIL.height*sf));
- //rectangle(canvasPart, vroiL, Scalar(0, 0, 255), 3, 8); //画上一个矩形
- cout << "Painted ImageL" << endl;
- //右图像画到画布上
- canvasPart = canvas(Rect(w, 0, w, h)); //获得画布的另一部分
- resize(rgbRectifyImageR, canvasPart, canvasPart.size(), 0, 0, INTER_LINEAR);
- Rect vroiR(cvRound(validROIR.x * sf), cvRound(validROIR.y*sf),
- cvRound(validROIR.width * sf), cvRound(validROIR.height * sf));
- //rectangle(canvasPart, vroiR, Scalar(0, 0, 255), 3, 8);
- cout << "Painted ImageR" << endl;
- //画上对应的线条
- for (int i = 0; i < canvas.rows; i += 16)
- line(canvas, Point(0, i), Point(canvas.cols, i), Scalar(0, 255, 0), 1, 8);
- imshow("rectified", canvas);
- /*
- 立体匹配
- */
- namedWindow("disparity", CV_WINDOW_AUTOSIZE);
- // 创建SAD窗口 Trackbar
- createTrackbar("BlockSize:\n", "disparity",&blockSize, 8, stereo_match);
- // 创建视差唯一性百分比窗口 Trackbar
- createTrackbar("UniquenessRatio:\n", "disparity", &uniquenessRatio, 50, stereo_match);
- // 创建视差窗口 Trackbar
- createTrackbar("NumDisparities:\n", "disparity", &numDisparities, 16, stereo_match);
- //鼠标响应函数setMouseCallback(窗口名称, 鼠标回调函数, 传给回调函数的参数,一般取0)
- setMouseCallback("disparity", onMouse, 0);
- stereo_match(0,0);
- waitKey(0);
- return 0;
- }
————————————————————————————————————————
- //opencv2.4.9 vs2012
- #include <opencv2\opencv.hpp>
- #include <fstream>
- #include <iostream>
- using namespace std;
- using namespace cv;
- //图片对数量
- #define PicNum 14
- //左相机内参数矩阵
- float leftIntrinsic[3][3] = {4037.82450, 0, 947.65449,
- 0, 3969.79038, 455.48718,
- 0, 0, 1};
- //左相机畸变系数
- float leftDistortion[1][5] = {0.18962, -4.05566, -0.00510, 0.02895, 0};
- //左相机旋转矩阵
- float leftRotation[3][3] = {0.912333, -0.211508, 0.350590,
- 0.023249, -0.828105, -0.560091,
- 0.408789, 0.519140, -0.750590};
- //左相机平移向量
- float leftTranslation[1][3] = {-127.199992, 28.190639, 1471.356768};
- //右相机内参数矩阵
- float rightIntrinsic[3][3] = {3765.83307, 0, 339.31958,
- 0, 3808.08469, 660.05543,
- 0, 0, 1};
- //右相机畸变系数
- float rightDistortion[1][5] = {-0.24195, 5.97763, -0.02057, -0.01429, 0};
- //右相机旋转矩阵
- float rightRotation[3][3] = {-0.134947, 0.989568, -0.050442,
- 0.752355, 0.069205, -0.655113,
- -0.644788, -0.126356, -0.753845};
- //右相机平移向量
- float rightTranslation[1][3] = {50.877397, -99.796492, 1507.312197};
- //球坐标数组
- //大球
- float rightDaqiu[PicNum][2] = {0};
- float leftDaqiu[PicNum][2] = {0};
- float worldDaqiu[PicNum][3] = {0};
- //小球
- float rightXiaoqiu[PicNum][2] = {0};
- float leftXiaoqiu[PicNum][2] = {0};
- float worldXiaoqiu[PicNum][3] = {0};
- //花球
- float rightHuaqiu[PicNum][2] = {0};
- float leftHuaqiu[PicNum][2] = {0};
- float worldHuaqiu[PicNum][3] = {0};
- void ContrastAndBright(double alpha, double beta);//调节亮度/对比度
- void CorrectionProcess();//对素材校正畸变
- void initPos();//手动赋值球的图像坐标
- void Daqiu();//计算大球图像坐标
- Mat PictureCorrection( Mat image ,float intrinsic[3][3],float distortion[1][5]);//单张图像畸变校正
- Point2f xyz2uv(Point3f worldPoint,float intrinsic[3][3],float translation[1][3],float rotation[3][3]);//从世界坐标转为图像坐标
- Point3f uv2xyz(Point2f uvLeft,Point2f uvRight);//从图像坐标转为世界坐标
- int main()
- {
- CorrectionProcess();//对素材校正畸变
- ContrastAndBright(2.5,50);//调节亮度/对比度
- Daqiu();//自动计算大球坐标
- initPos();//手动修正,如需验证数据,可以在该函数中修改
- //求取大球的空间坐标
- cout<<"求解大球的世界坐标:"<<endl;
- for (int i=0; i<PicNum; i++)
- {
- Point2f l,r;
- Point3f worldPoint;
- l.x = leftDaqiu[i][0];
- l.y = leftDaqiu[i][1];
- r.x = rightDaqiu[i][0];
- r.y = rightDaqiu[i][1];
- worldPoint = uv2xyz(l,r);
- cout<< worldPoint <<endl;
- worldDaqiu[i][0] = worldPoint.x;
- worldDaqiu[i][1] = worldPoint.y;
- worldDaqiu[i][2] = worldPoint.z;
- }
- cout<<"求解小球的世界坐标:"<<endl;
- for (int i=0; i<PicNum; i++)
- {
- Point2f l,r;
- Point3f worldPoint;
- l.x = leftXiaoqiu[i][0];
- l.y = leftXiaoqiu[i][1];
- r.x = rightXiaoqiu[i][0];
- r.y = rightXiaoqiu[i][1];
- worldPoint = uv2xyz(l,r);
- cout<< worldPoint <<endl;
- worldXiaoqiu[i][0] = worldPoint.x;
- worldXiaoqiu[i][1] = worldPoint.y;
- worldXiaoqiu[i][2] = worldPoint.z;
- }
- cout<<"求解花球的世界坐标:"<<endl;
- for (int i=0; i<PicNum; i++)
- {
- Point2f l,r;
- Point3f worldPoint;
- l.x = leftHuaqiu[i][0];
- l.y = leftHuaqiu[i][1];
- r.x = rightHuaqiu[i][0];
- r.y = rightHuaqiu[i][1];
- worldPoint = uv2xyz(l,r);
- cout<< worldPoint <<endl;
- worldHuaqiu[i][0] = worldPoint.x;
- worldHuaqiu[i][1] = worldPoint.y;
- worldHuaqiu[i][2] = worldPoint.z;
- }
- //csv文件写入部分
- ofstream oFile; //定义文件输出流
- oFile.open("三维坐标.csv", ios::out | ios::trunc); //打开要输出的文件 这样就很容易的输出一个需要的excel 文件
- //写入大球数据
- oFile << "大球坐标" << endl;
- oFile << "左相机坐标,,,右相机坐标,,,世界坐标" << endl;
- oFile << "x,y,,x,y,,x,y,z" << endl;
- for (int i=0; i<PicNum ;i++)
- {
- oFile << leftDaqiu[i][0] <<","<< leftDaqiu[i][1] << ",," << rightDaqiu[i][0] <<","<< rightDaqiu[i][1]
- << ",," << worldDaqiu[i][0] <<","<< worldDaqiu[i][1] <<","<< worldDaqiu[i][2] << endl;
- }
- //写入小球数据
- oFile << "小球坐标" << endl;
- oFile << "左相机坐标,,,右相机坐标,,,世界坐标" << endl;
- oFile << "x,y,,x,y,,x,y,z" << endl;
- for (int i=0; i<PicNum ;i++)
- {
- oFile << leftXiaoqiu[i][0] <<","<< leftXiaoqiu[i][1] << ",," << rightXiaoqiu[i][0] <<","<< rightXiaoqiu[i][1]
- << ",," << worldXiaoqiu[i][0] <<","<< worldXiaoqiu[i][1] <<","<< worldXiaoqiu[i][2] << endl;
- }
- //写入花球数据
- oFile << "花球坐标" << endl;
- oFile << "左相机坐标,,,右相机坐标,,,世界坐标" << endl;
- oFile << "x,y,,x,y,,x,y,z" << endl;
- for (int i=0; i<PicNum ;i++)
- {
- oFile << leftHuaqiu[i][0] <<","<< leftHuaqiu[i][1] << ",," << rightHuaqiu[i][0] <<","<< rightHuaqiu[i][1]
- << ",," << worldHuaqiu[i][0] <<","<< worldHuaqiu[i][1] <<","<< worldHuaqiu[i][2] << endl;
- }
- //关闭文件
- oFile.close();
- //test
- 已知空间坐标求成像坐标
- //Point3f point(700,220,530);
- //cout<<"左相机中坐标:"<<endl;
- //cout<<xyz2uv(point,leftIntrinsic,leftTranslation,leftRotation)<<endl;
- //cout<<"右相机中坐标:"<<endl;
- //cout<<xyz2uv(point,rightIntrinsic,rightTranslation,rightRotation)<<endl;
- //已知左右相机成像坐标求空间坐标
- //Point2f l = xyz2uv(point,leftIntrinsic,leftTranslation,leftRotation);
- //Point2f r = xyz2uv(point,rightIntrinsic,rightTranslation,rightRotation);
- //Point3f worldPoint;
- //worldPoint = uv2xyz(l,r);
- //cout<<"空间坐标为:"<<endl<<uv2xyz(l,r)<<endl;
- /*
- //csv文件读取部分
- string value;//临时字符串
- ifstream iFile("三维坐标.csv");//打开要读入的文件
- //循环行读取
- while (iFile.good())
- {
- getline(iFile,value);
- //getline(iFile,value,','); //.csv文件用","作为分隔符
- cout<<value<<endl;
- }
- */
- system("pause");
- return 0;
- }
- //************************************
- // Description: 修正圆心坐标
- // Method: initPos
- // FullName: initPos
- // Access: public
- // Returns: void
- // Author: bhy
- // Date: 2016/12/25
- // History:
- //************************************
- void initPos()
- {
- //手动修正
- leftDaqiu[0][0] = 1175; leftDaqiu[0][1] = 7; rightDaqiu[0][0] = 256; rightDaqiu[0][1] = 1;
- leftDaqiu[1][0] = 823; leftDaqiu[1][1] = 603; rightDaqiu[1][0] = 289; rightDaqiu[1][1] = 431;
- leftDaqiu[2][0] = 963; leftDaqiu[2][1] = 360; rightDaqiu[2][0] = 283; rightDaqiu[2][1] = 169;
- leftDaqiu[3][0] = 1065; leftDaqiu[3][1] = 180; rightDaqiu[3][0] = 294; rightDaqiu[3][1] = 1;
- leftDaqiu[4][0] = 1039; leftDaqiu[4][1] = 217; rightDaqiu[4][0] = 314; rightDaqiu[4][1] = 68;
- leftDaqiu[5][0] = 896; leftDaqiu[5][1] = 448; rightDaqiu[5][0] = 378; rightDaqiu[5][1] = 402;
- leftDaqiu[6][0] = 933; leftDaqiu[6][1] = 376; rightDaqiu[6][0] = 398; rightDaqiu[6][1] = 347;
- leftDaqiu[7][0] = 868; leftDaqiu[7][1] = 463; rightDaqiu[7][0] = 423; rightDaqiu[7][1] = 418;
- leftDaqiu[8][0] = 878; leftDaqiu[8][1] = 417; rightDaqiu[8][0] = 458; rightDaqiu[8][1] = 466;
- leftDaqiu[9][0] = 860; leftDaqiu[9][1] = 423; rightDaqiu[9][0] = 481; rightDaqiu[9][1] = 490;
- leftDaqiu[10][0] = 840; leftDaqiu[10][1] = 442; rightDaqiu[10][0] = 499; rightDaqiu[10][1] = 500;
- leftDaqiu[11][0] = 822; leftDaqiu[11][1] = 414; rightDaqiu[11][0] = 523; rightDaqiu[11][1] = 511;
- leftDaqiu[12][0] = 805; leftDaqiu[12][1] = 406; rightDaqiu[12][0] = 538; rightDaqiu[12][1] = 516;
- leftDaqiu[13][0] = 802; leftDaqiu[13][1] = 402; rightDaqiu[13][0] = 549; rightDaqiu[13][1] = 514;
- leftXiaoqiu[0][0] = 1250; leftXiaoqiu[0][1] = 120; rightXiaoqiu[0][0] = 308; rightXiaoqiu[0][1] = 313;
- leftXiaoqiu[1][0] = 1034; leftXiaoqiu[1][1] = 481; rightXiaoqiu[1][0] = 314; rightXiaoqiu[1][1] = 482;
- leftXiaoqiu[2][0] = 1207; leftXiaoqiu[2][1] = 228; rightXiaoqiu[2][0] = 284; rightXiaoqiu[2][1] = 186;
- leftXiaoqiu[3][0] = 1343; leftXiaoqiu[3][1] = 55; rightXiaoqiu[3][0] = 252; rightXiaoqiu[3][1] = -20;
- leftXiaoqiu[4][0] = 1326; leftXiaoqiu[4][1] = 102; rightXiaoqiu[4][0] = 242; rightXiaoqiu[4][1] = 23;
- leftXiaoqiu[5][0] = 1021; leftXiaoqiu[5][1] = 625; rightXiaoqiu[5][0] = 269; rightXiaoqiu[5][1] = 632;
- leftXiaoqiu[6][0] = 1123; leftXiaoqiu[6][1] = 489; rightXiaoqiu[6][0] = 241; rightXiaoqiu[6][1] = 458;
- leftXiaoqiu[7][0] = 1147; leftXiaoqiu[7][1] = 475; rightXiaoqiu[7][0] = 224; rightXiaoqiu[7][1] = 404;
- leftXiaoqiu[8][0] = 1078; leftXiaoqiu[8][1] = 595; rightXiaoqiu[8][0] = 223; rightXiaoqiu[8][1] = 558;
- leftXiaoqiu[9][0] = 1062; leftXiaoqiu[9][1] = 635; rightXiaoqiu[9][0] = 216; rightXiaoqiu[9][1] = 598;
- leftXiaoqiu[10][0] = 1080; leftXiaoqiu[10][1] = 619; rightXiaoqiu[10][0] = 201; rightXiaoqiu[10][1] = 576;
- leftXiaoqiu[11][0] = 1054; leftXiaoqiu[11][1] = 690; rightXiaoqiu[11][0] = 189; rightXiaoqiu[11][1] = 633;
- leftXiaoqiu[12][0] = 1046; leftXiaoqiu[12][1] = 724; rightXiaoqiu[12][0] = 179; rightXiaoqiu[12][1] = 655;
- leftXiaoqiu[13][0] = 1046; leftXiaoqiu[13][1] = 726; rightXiaoqiu[13][0] = 172; rightXiaoqiu[13][1] = 656;
- leftHuaqiu[0][0] = 1075; leftHuaqiu[0][1] = 111; rightHuaqiu[0][0] = 120; rightHuaqiu[0][1] = -30;//出视场
- leftHuaqiu[1][0] = 708; leftHuaqiu[1][1] = 810; rightHuaqiu[1][0] = 142; rightHuaqiu[1][1] = 382;
- leftHuaqiu[2][0] = 876; leftHuaqiu[2][1] = 518; rightHuaqiu[2][0] = 131; rightHuaqiu[2][1] = 83;
- leftHuaqiu[3][0] = 1021; leftHuaqiu[3][1] = 253; rightHuaqiu[3][0] = 180; rightHuaqiu[3][1] = -60;//出视场
- leftHuaqiu[4][0] = 1019; leftHuaqiu[4][1] = 248; rightHuaqiu[4][0] = 183; rightHuaqiu[4][1] = -30;//出视场
- leftHuaqiu[5][0] = 764; leftHuaqiu[5][1] = 654; rightHuaqiu[5][0] = 278; rightHuaqiu[5][1] = 437;
- leftHuaqiu[6][0] = 844; leftHuaqiu[6][1] = 486; rightHuaqiu[6][0] = 286; rightHuaqiu[6][1] = 261;
- leftHuaqiu[7][0] = 852; leftHuaqiu[7][1] = 425; rightHuaqiu[7][0] = 305; rightHuaqiu[7][1] = 206;
- leftHuaqiu[8][0] = 780; leftHuaqiu[8][1] = 523; rightHuaqiu[8][0] = 347; rightHuaqiu[8][1] = 359;
- leftHuaqiu[9][0] = 757; leftHuaqiu[9][1] = 530; rightHuaqiu[9][0] = 363; rightHuaqiu[9][1] = 382;
- leftHuaqiu[10][0] = 765; leftHuaqiu[10][1] = 505; rightHuaqiu[10][0] = 368; rightHuaqiu[10][1] = 345;
- leftHuaqiu[11][0] = 702; leftHuaqiu[11][1] = 554; rightHuaqiu[11][0] = 382; rightHuaqiu[11][1] = 398;
- leftHuaqiu[12][0] = 666; leftHuaqiu[12][1] = 573; rightHuaqiu[12][0] = 386; rightHuaqiu[12][1] = 408;
- leftHuaqiu[13][0] = 656; leftHuaqiu[13][1] = 581; rightHuaqiu[13][0] = 384; rightHuaqiu[13][1] = 398;
- }
- //************************************
- // 2016/12/2 by 小白
- // Method: uv2xyz
- // FullName: uv2xyz
- // Access: public
- // Returns: cv::Point3f 世界坐标
- // Qualifier: 根据左右相机中成像坐标求解空间坐标
- // Parameter: Point2f uvLeft 左相机中成像坐标
- // Parameter: Point2f uvRight 右相机中成像坐标
- //************************************
- Point3f uv2xyz(Point2f uvLeft,Point2f uvRight)
- {
- // [u1] |X| [u2] |X|
- //Z*|v1| = Ml*|Y| Z*|v2| = Mr*|Y|
- // [ 1] |Z| [ 1] |Z|
- // |1| |1|
- Mat mLeftRotation = Mat(3,3,CV_32F,leftRotation);
- Mat mLeftTranslation = Mat(3,1,CV_32F,leftTranslation);
- Mat mLeftRT = Mat(3,4,CV_32F);//左相机M矩阵
- hconcat(mLeftRotation,mLeftTranslation,mLeftRT);
- Mat mLeftIntrinsic = Mat(3,3,CV_32F,leftIntrinsic);
- Mat mLeftM = mLeftIntrinsic * mLeftRT;
- //cout<<"左相机M矩阵 = "<<endl<<mLeftM<<endl;
- Mat mRightRotation = Mat(3,3,CV_32F,rightRotation);
- Mat mRightTranslation = Mat(3,1,CV_32F,rightTranslation);
- Mat mRightRT = Mat(3,4,CV_32F);//右相机M矩阵
- hconcat(mRightRotation,mRightTranslation,mRightRT);
- Mat mRightIntrinsic = Mat(3,3,CV_32F,rightIntrinsic);
- Mat mRightM = mRightIntrinsic * mRightRT;
- //cout<<"右相机M矩阵 = "<<endl<<mRightM<<endl;
- //最小二乘法A矩阵
- Mat A = Mat(4,3,CV_32F);
- A.at<float>(0,0) = uvLeft.x * mLeftM.at<float>(2,0) - mLeftM.at<float>(0,0);
- A.at<float>(0,1) = uvLeft.x * mLeftM.at<float>(2,1) - mLeftM.at<float>(0,1);
- A.at<float>(0,2) = uvLeft.x * mLeftM.at<float>(2,2) - mLeftM.at<float>(0,2);
- A.at<float>(1,0) = uvLeft.y * mLeftM.at<float>(2,0) - mLeftM.at<float>(1,0);
- A.at<float>(1,1) = uvLeft.y * mLeftM.at<float>(2,1) - mLeftM.at<float>(1,1);
- A.at<float>(1,2) = uvLeft.y * mLeftM.at<float>(2,2) - mLeftM.at<float>(1,2);
- A.at<float>(2,0) = uvRight.x * mRightM.at<float>(2,0) - mRightM.at<float>(0,0);
- A.at<float>(2,1) = uvRight.x * mRightM.at<float>(2,1) - mRightM.at<float>(0,1);
- A.at<float>(2,2) = uvRight.x * mRightM.at<float>(2,2) - mRightM.at<float>(0,2);
- A.at<float>(3,0) = uvRight.y * mRightM.at<float>(2,0) - mRightM.at<float>(1,0);
- A.at<float>(3,1) = uvRight.y * mRightM.at<float>(2,1) - mRightM.at<float>(1,1);
- A.at<float>(3,2) = uvRight.y * mRightM.at<float>(2,2) - mRightM.at<float>(1,2);
- //最小二乘法B矩阵
- Mat B = Mat(4,1,CV_32F);
- B.at<float>(0,0) = mLeftM.at<float>(0,3) - uvLeft.x * mLeftM.at<float>(2,3);
- B.at<float>(1,0) = mLeftM.at<float>(1,3) - uvLeft.y * mLeftM.at<float>(2,3);
- B.at<float>(2,0) = mRightM.at<float>(0,3) - uvRight.x * mRightM.at<float>(2,3);
- B.at<float>(3,0) = mRightM.at<float>(1,3) - uvRight.y * mRightM.at<float>(2,3);
- Mat XYZ = Mat(3,1,CV_32F);
- //采用SVD最小二乘法求解XYZ
- solve(A,B,XYZ,DECOMP_SVD);
- //cout<<"空间坐标为 = "<<endl<<XYZ<<endl;
- //世界坐标系中坐标
- Point3f world;
- world.x = XYZ.at<float>(0,0);
- world.y = XYZ.at<float>(1,0);
- world.z = XYZ.at<float>(2,0);
- return world;
- }
- //************************************
- // Description: 将空间坐标转换为像面坐标,用于检验
- // Method: xyz2uv
- // FullName: xyz2uv
- // Access: public
- // Parameter: Point3f worldPoint
- // Parameter: float intrinsic[3][3]
- // Parameter: float translation[1][3]
- // Parameter: float rotation[3][3]
- // Returns: cv::Point2f
- // Author: bhy
- // Date: 2016/12/28
- // History:
- //************************************
- Point2f xyz2uv(Point3f worldPoint,float intrinsic[3][3],float translation[1][3],float rotation[3][3])
- {
- // [fx s x0] [Xc] [Xw] [u] 1 [Xc]
- //K = |0 fy y0| TEMP = [R T] |Yc| = TEMP*|Yw| | | = —*K *|Yc|
- // [ 0 0 1 ] [Zc] |Zw| [v] Zc [Zc]
- // [1 ]
- Point3f c;
- c.x = rotation[0][0]*worldPoint.x + rotation[0][1]*worldPoint.y + rotation[0][2]*worldPoint.z + translation[0][0]*1;
- c.y = rotation[1][0]*worldPoint.x + rotation[1][1]*worldPoint.y + rotation[1][2]*worldPoint.z + translation[0][1]*1;
- c.z = rotation[2][0]*worldPoint.x + rotation[2][1]*worldPoint.y + rotation[2][2]*worldPoint.z + translation[0][2]*1;
- Point2f uv;
- uv.x = (intrinsic[0][0]*c.x + intrinsic[0][1]*c.y + intrinsic[0][2]*c.z)/c.z + 0.5;//加0.5去整 == 四舍五入
- uv.y = (intrinsic[1][0]*c.x + intrinsic[1][1]*c.y + intrinsic[1][2]*c.z)/c.z + 0.5;//加0.5去整 == 四舍五入
- return uv;
- }
- //************************************
- // Description: 对畸变校正文件夹下的图片批量进行亮度/对比度调节
- // Method: ContrastAndBright
- // FullName: ContrastAndBright
- // Access: public
- // Parameter: double alpha
- // Parameter: double beta
- // Returns: void
- // Author: bhy
- // Date: 2016/12/28
- // History:
- //************************************
- void ContrastAndBright(double alpha, double beta)
- {
- //double alpha =3;
- //double beta = 40;
- cout<<"**********************************************"<<endl;
- cout<<" 亮度/对比度调节 "<<endl;
- cout<<"**********************************************"<<endl;
- cout<<"当前 alpha = "<<alpha<<endl;
- cout<<"当前 beta = "<<beta<<endl;
- Mat src,dst;
- system("md 亮度对比度\\rightky1");
- //右相机调节
- //如果校正图像目录不存在,则创建该目录
- for (int ii=1; ii<=PicNum; ii++)
- {
- cout<<"右:第"<<ii<<"张图片"<<endl;
- char* filename = new char[100];
- sprintf(filename,"畸变校正/rightky1/r%d.bmp",ii);
- src = imread(filename);//顺次读入图片
- delete []filename;//释放字符串
- dst = Mat::zeros(src.size(),src.type());//清空目标矩阵
- //根据alpha,beta重新计算灰度值
- for (int i = 0;i<src.rows;++i)
- for(int j= 0;j<src.cols;++j)
- for(int k = 0;k<3;++k)
- dst.at<Vec3b>(i,j)[k] = saturate_cast<uchar>(src.at<Vec3b>(i,j)[k]*alpha+beta);
- char* output = new char[100];
- sprintf(output,"亮度对比度/rightky1/r%d.bmp",ii);
- imwrite(output,dst); //顺次保存校正图
- delete []output;//释放字符串
- }
- //左相机调节
- //如果校正图像目录不存在,则创建该目录
- system("md 亮度对比度\\leftky1");
- for (int ii=1; ii<=PicNum; ii++)
- {
- cout<<"左:第"<<ii<<"张图片"<<endl;
- char* filename = new char[100];
- sprintf(filename,"畸变校正/leftky1/l%d.bmp",ii);
- src = imread(filename);//顺次读入图片
- delete []filename;//释放字符串
- dst = Mat::zeros(src.size(),src.type());//清空目标矩阵
- //根据alpha,beta重新计算灰度值
- for (int i = 0;i<src.rows;++i)
- for(int j= 0;j<src.cols;++j)
- for(int k = 0;k<3;++k)
- dst.at<Vec3b>(i,j)[k] = saturate_cast<uchar>(src.at<Vec3b>(i,j)[k]*alpha+beta);
- char* output = new char[100];
- sprintf(output,"亮度对比度/leftky1/l%d.bmp",ii);
- imwrite(output,dst); //顺次保存校正图
- delete []output;//释放字符串
- }
- cout<<"**********************************************"<<endl;
- cout<<" 亮度/对比度调节结束 "<<endl;
- cout<<"**********************************************"<<endl;
- }
- //************************************
- // Description: 对素材文件夹中的图片批量进行畸变校正
- // Method: CorrectionProcess
- // FullName: CorrectionProcess
- // Access: public
- // Returns: void
- // Author: bhy
- // Date: 2016/12/28
- // History:
- //************************************
- void CorrectionProcess()
- {
- cout<<"**********************************************"<<endl;
- cout<<" 畸变校正 "<<endl;
- cout<<"**********************************************"<<endl;
- Mat image;
- //使用畸变系数与内参校正右相机原图
- //如果校正图像目录不存在,则创建该目录
- system("md 畸变校正\\rightky1");
- for (int i=1; i<=PicNum; i++)
- {
- cout<<"右:校正第"<<i<<"张图片"<<endl;
- char* filename = new char[100];
- sprintf(filename,"素材/rightky1/r%d.bmp",i);
- image = imread(filename,IMREAD_GRAYSCALE);//顺次读入图片
- delete []filename;//释放字符串
- char* output = new char[100];
- sprintf(output,"畸变校正/rightky1/r%d.bmp",i);
- imwrite(output,PictureCorrection(image,rightIntrinsic,rightDistortion)); //顺次保存校正图
- delete []output;//释放字符串
- }
- //使用畸变系数与内参校正左相机原图
- //如果校正图像目录不存在,则创建该目录
- system("md 畸变校正\\leftky1");
- for (int i=1; i<=PicNum; i++)
- {
- cout<<"左:校正第"<<i<<"张图片"<<endl;
- char* filename = new char[100];
- sprintf(filename,"素材/leftky1/l%d.bmp",i);
- image = imread(filename,IMREAD_GRAYSCALE);//顺次读入图片
- delete []filename;//释放字符串
- char* output = new char[100];
- sprintf(output,"畸变校正/leftky1/l%d.bmp",i);
- imwrite(output,PictureCorrection(image,leftIntrinsic,leftDistortion)); //顺次保存校正图
- delete []output;//释放字符串
- }
- cout<<"**********************************************"<<endl;
- cout<<" 畸变校正结束 "<<endl;
- cout<<"**********************************************"<<endl;
- }
- //************************************
- // Method: PictureCorrection
- // FullName: PictureCorrection
- // Access: public
- // Returns: cv::Mat 校正图
- // Qualifier: 根据畸变系数与内参校正一张图片
- // Parameter: Mat image
- // Parameter: float intrinsic[3][3] 内参
- // Parameter: float distortion[1][5] 畸变矩阵
- //************************************
- Mat PictureCorrection( Mat image ,float intrinsic[3][3],float distortion[1][5])
- {
- Size image_size = image.size();
- Mat intrinsic_matrix = Mat(3,3,CV_32FC1,intrinsic);
- Mat distortion_coeffs = Mat(1,5,CV_32FC1,distortion);
- Mat R = Mat::eye(3,3,CV_32F);
- Mat mapx = Mat(image_size,CV_32FC1);
- Mat mapy = Mat(image_size,CV_32FC1);
- initUndistortRectifyMap(intrinsic_matrix,distortion_coeffs,R,intrinsic_matrix,image_size,CV_32FC1,mapx,mapy);
- Mat t = image.clone();
- cv::remap( image, t, mapx, mapy, INTER_LINEAR);
- return t;
- }
- //************************************
- // Description: 采用hough变换求取大球圆心
- // Method: Daqiu
- // FullName: Daqiu
- // Access: public
- // Returns: void
- // Author: bhy
- // Date: 2016/12/28
- // History:
- //************************************
- void Daqiu()
- {
- cout<<"**********************************************"<<endl;
- cout<<" 计算大球圆心 "<<endl;
- cout<<"**********************************************"<<endl;
- Mat img;
- //右相机 ContrastAndBright(2.5,50);
- system("md 大球圆心\\rightky1");
- cout<<"右图:"<<endl;
- for (int i=1; i<=PicNum; i++)
- {
- stringstream strStm;
- string strFileName;
- strStm << i;
- strStm >> strFileName;
- strFileName = "亮度对比度/rightky1/r" + strFileName + ".bmp";
- img = imread(strFileName,IMREAD_GRAYSCALE);
- GaussianBlur(img,img,Size(5,5),0);
- vector<Vec3f> circles;
- HoughCircles( img, circles, CV_HOUGH_GRADIENT, 3 ,70, 70, 30, 95 ,100);//hough圆变换
- Point2f center(0,0);
- float radius;
- for (int j = 0; j < circles.size(); j++)
- {
- if (circles[j][0] > center.x && circles[j][0] < img.cols/2)
- {
- center.x = circles[j][0];
- center.y = circles[j][1];
- radius = circles[j][2];//半径
- }
- }
- rightDaqiu[i-1][0] = center.x;
- rightDaqiu[i-1][1] = center.y;
- CvScalar color = CV_RGB(0,0,0);
- circle( img, (Point)center, radius, color, 3, 8, 0);//绘制圆
- circle( img, (Point)center, 3, color, 3, 8, 0);//绘制圆心
- cout<<"圆心:"<<center<<endl;//为了保证精度,以原值输出
- char* output = new char[100];
- sprintf(output,"大球圆心/rightky1/r%d.bmp",i);
- imwrite(output,img); //顺次保存校正图
- delete []output;//释放字符串
- }
- system("md 大球圆心\\leftky1");
- cout<<"左图:"<<endl;
- for (int i=1; i<=PicNum; i++)
- {
- stringstream strStm;
- string strFileName;
- strStm << i;
- strStm >> strFileName;
- strFileName = "亮度对比度/leftky1/l" + strFileName + ".bmp";
- img = imread(strFileName,IMREAD_GRAYSCALE);
- GaussianBlur(img,img,Size(5,5),0);
- vector<Vec3f> circles;
- HoughCircles( img, circles, CV_HOUGH_GRADIENT, 3 ,70, 30, 50, 100 ,110);//hough圆变换
- Point2f center(0,1024);
- float radius;
- for (int j = 0; j < circles.size(); j++)
- {
- if (circles[j][1]<center.y)
- {
- center.x = circles[j][0];
- center.y = circles[j][1];
- radius = circles[j][2];//半径
- }
- }
- leftDaqiu[i-1][0] = center.x;
- leftDaqiu[i-1][1] = center.y;
- CvScalar color = CV_RGB(0,0,0);
- circle( img, center, radius, color, 3, 8, 0);//绘制圆
- circle( img, center, 3, color, 3, 8, 0);//绘制圆心
- cout<<"圆心:"<<center<<endl;//为了保证精度,以原值输出
- char* output = new char[100];
- sprintf(output,"大球圆心/leftky1/l%d.bmp",i);
- imwrite(output,img); //顺次保存校正图
- delete []output;//释放字符串
- }
- cout<<"**********************************************"<<endl;
- cout<<" 圆心计算结束 "<<endl;
- cout<<"**********************************************"<<endl;
- }
运行该程序,会提取生成的“三维坐标.csv”中的空间坐标数据,并绘制运动轨迹需要注意的是,在“三维坐标.csv”文件中直接修改圆心坐标没有用,需要在工程中的initPos()修改。
[cpp] view plain copy
- clc;clear;
- M = csvread('三维坐标.csv',3,6,[3,6,16,8]);
- x = M(:,1);
- y = M(:,2);
- z = M(:,3);
- plot3(x,y,z,'r');
- %legend('大球');
- hold on
- M = csvread('三维坐标.csv',20,6,[20,6,33,8]);
- x = M(:,1);
- y = M(:,2);
- z = M(:,3);
- plot3(x,y,z,'g');
- %legend('小球');
- hold on
- M = csvread('三维坐标.csv',37,6,[37,6,50,8]);
- x = M(:,1);
- y = M(:,2);
- z = M(:,3);
- plot3(x,y,z,'b');
- %legend('花球');
- hold on
- legend('大球','小球','花球');
- title('小球运动轨迹');
- xlabel('x');
- ylabel('y');
- zlabel('z');
- grid on
- axis square
最后绘制的轨迹图
补一张世界坐标系的图