陈宝林《最优化理论与算法》超详细学习笔记 (二)————补充知识(凸集) & 第二章 线性规划的基本性质

本文详细介绍了线性规划中的凸集概念,包括方向与极方向的定义,以及表示定理和择一定理。此外,还探讨了线性规划的基本性质,如问题的提出、图解法、标准型,并通过实例展示了如何将非标准线性规划问题转化为标准形式。
摘要由CSDN通过智能技术生成

陈宝林《最优化理论与算法》超详细学习笔记 (二)————补充知识 凸集 & 第二章 线性规划的基本性质

补充知识

凸集

设 S 为 n 维欧氏空间 R n R^n Rn中一个集合。 若对 S 中任意两点,联结它们的线既仍属于 S; 换言之,对 S 中任意两点 x ( 1 ) , x ( 2 ) \bf{x}^{(1)},\bf{x}^{(2)} x(1),x(2) 及每个实数
λ ∈ [ 0 , 1 ] \lambda \in[0, \quad1] λ[0,1] 都有:
λ x ( 1 ) + ( 1 − λ ) x ( 2 ) ∈ S \lambda x^{(1)}+(1-\lambda) x^{(2)} \in S λx(1)+(1λ)x(2)S
则称 S 为凸集 λ x ( 1 ) + ( 1 − λ ) x ( 2 ) \lambda x^{(1)}+(1-\lambda)x^{(2)} λx(1)+(1λ)x(2)称为凸组合.
在这里插入图片描述
如图(a)是凸集,而图(b)不是.

方向与极方向

设S为 R n R^n Rn中闭四集,d为非零向量,如果对S中的每一个x都 有 射 线 { x + λ d ∣   λ ≥ 0 } ∈ S \{\mathrm{ x} + \lambda d | ~ \lambda \geq 0 \}\in S { x+λd λ0}S , 则 称 d 为 S 的 一 个 方 向 。
设d是S的两个方向,若S不能表示成该集合的两个不同 方向的正线性组合,则称d为S的极方向.
在这里插入图片描述
如图(a)中d是一个方向,图©中与边界重合的d是一个极方向,图(b)中d则既不是方向也不是极方向.

表示定理

  S = { x ∣ A x = b , x ≥ 0 }   \mathrm{~S = \{ x |A x = b , x \geq 0 \} ~}  S={ xAx=b,x0} 为 非 空 多 面 集 , 则 有 :
(1)P的极点集K是非空的有限集合,记为 { x ( 1 ) , x ( 2 ) , x ( k ) } \{ \left.x^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(k)}\right\} { x(1),x(2),x(k)}
(2)设S的极方向集为J,则指标集J是空集当且仅当S是有界 集合,即多胞形.
(3) x ∈ S x \in S xS的充要条件为:
x = ∑ k ∈ K λ k x k + ∑ j ∈ J μ j d j x=\sum_{k \in K} \lambda_{k} x^{k}+\sum_{j \in J} \mu_{j} d^{j} x=kKλkxk+jJμjdj
其中 ∑ k ∈ K λ k = 1 , λ k ≥ 0 , k ∈ K , μ j ≥ 0 , j ∈ J \sum_{k \in K} \lambda_{k}=1, \lambda_{k} \geq 0, k \in K, \mu_{j} \geq 0, j \in J kKλk=1,λk0,kK,μj0,jJ

择一定理

  • Farkas定理
    设A为 m × n m \times n m×n矩阵,c为n维向量,则 A x ≤ 0 , c T x > 0 A x \leq 0, \quad c^{T} x>0 Ax0,cTx>0 有解的充要条件是, A T y = c , y ≥ 0 A^{T} y=c, y \geq 0 ATy=c,y0 无解.
  • Gordan定理
    设A为 m × n m \times n m×n矩阵,那么, A x < 0 Ax<0 Ax<0有解的充要条件是不存在非零向量 y ≥ 0 y \geq0 y0,使 A ′ y = 0 A'y=0 Ay=0.

证明略.

第一章 线性规划的基本性质

问题的提出

例 某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示

产品1 产品2 拥有量
设备 1 2 8台时
原材料A 4 0 16kg
原材料B 0 4 12kg

每生产一件产品1可获利2元,每生产一件产品2可获利3元,问应如何安排计划使该工厂获利最多?

根据题目:

  1. x 1 , x 2 x_{1}, x_{2} x1,x2 分别表示计划生产I,II产品的数量, 称它们为决策变量;
  2. 生产 x 1 , x 2 x_{1}, x_{2} x1,x2 的数量多少,受资源押有量的限制 这是约束条件,即x_ + 2 x 2 ≤ 8 ; 4 x 1 ≤ 16 ; 4 x 2 ≤ 12 +2 x_{2} \leq 8 ; 4 x_{1} \leq 16 ; 4 x_{2} \leq 12 +2x28;4x116;4x212
  3. 生产的产品不能是负值,即x_, x 2 ≥ 0 x_{2} \geq 0 x20;
  4. 如何安排生产,使利润最大,这是目标.

用数学关系式可以表达为:
目标函数 max ⁡ z = 2 x 1 + 3 x 2 \quad \max z=2 x_{1}+3 x_{2} maxz=2x1+3x2
约束条件: { x 1 + 2 x 2 ≤ 8 4 x 1 ≤ 16 4 x 2 ≤ 12 x 1 , x 2 ≥ 0

  • 3
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值