《高等代数》重要概念复习

线性方程组

线性方程组解的个数

  1. 如果齐次线性方程组中方程的个数少于未知量的个数,则它有非零解.
  2. 方程个数与未知量个数相等时,有非零解的充分必要条件是,系数行列式的值为0.

线性相关性

  1. 如果有数域中的数 k 1 , k 2 , ⋯ k_1,k_2,\cdots k1,k2,,使得 β = k 1 α 1 + k 2 α 2 + ⋯ \beta =k_1\alpha_1+k_2\alpha_2+\cdots β=k1α1+k2α2+,则称 β \beta β α 1 , α 2 , ⋯ \alpha_1,\alpha_2,\cdots α1,α2,的线性组合.
  2. 零向量是任何向量的线性组合.
  3. 果一个向量组1的任意向量都可以由另外一个向量组2线性表出,那么就说向量组1可以由向量组2线性表出,如果两个向量组可以互相线性表出,那么就说两个向量组等价.
  4. 1如果有数域中的不全为零的数 k 1 , k 2 , ⋯ k_1,k_2,\cdots k1,k2,,使得 0 = k 1 α 1 + k 2 α 2 + ⋯ 0 =k_1\alpha_1+k_2\alpha_2+\cdots 0=k1α1+k2α2+,则称 α 1 , α 2 , ⋯ \alpha_1,\alpha_2,\cdots α1,α2,线性相关.若只有当 k i k_i ki全为0时等式成立,那么就称 α 1 , α 2 , ⋯ \alpha_1,\alpha_2,\cdots α1,α2,线性无关.
  5. α 1 , α 2 , ⋯ \alpha_1,\alpha_2,\cdots α1,α2,线性相关的充分必要条件是齐次方程组有非零解.线性无关的充分必要条件是只有零解.
  6. 极大线性无关组:如果这个部分组本身是线性无关的,但是再从原向量组中的其他向量添加一个进去后,所得的部分组都线性相关.极大线性无关组所含向量个数称为向量组的.

矩阵的秩

矩阵的行秩=列秩=行列式秩

线性方程组有解判别定理

  1. 线性方程组有解的充分必要条件:系数矩阵的秩=增广矩阵的秩
  2. 齐次线性方程组有非零解的充分必要条件:系数矩阵的秩小于n

线性方程组解的结构

  1. 对于齐次方程组:(1)两个解的和也是方程组的解.(2)一个解的倍数也是方程组的解.
  2. 齐次线性方程组的基础解系:一组解,线性无关且原方程组的所有解均能表示成这组解的线性组合.
  3. 在齐次线性方程组有非零解时,基础解系中解的个数为n-r.

矩阵

矩阵的计算

矩阵的乘法满足结合律不满足交换律.

矩阵的逆

矩阵可逆的充分必要条件是非退化的.

等价矩阵

  1. 矩阵经过一系列初等变换所得到的矩阵均为等价矩阵.(初等变换:互换行、某一行乘非零常数、某一行的k倍加到另外一行)
  2. 施行一次初等行变换=左乘初等矩阵,施行一次初等列变换=右乘初等矩阵.
  3. 方阵可逆的充要条件为:它能表示为一些初等矩阵的乘积.

正交矩阵

  1. 正交矩阵 A A ′ = E AA'=E AA=E
  2. 向量内积 ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0,则两向量正交.
  3. 正交向量组:向量组中任意两个向量都正交而且每个向量都不是零向量.
  4. 正交向量组一定线性无关.
  5. 可以利用施密特正交化方法将线性无关向量组转化为正交向量组.

矩阵对角化

相似矩阵

  1. 相似:如果存在可逆矩阵 X X X,使得 B = X − 1 A X B=X^{-1}AX B=X1AX,那么 A A A B B B相似.
  2. 相似矩阵具有相同的行列式的值,并且具有相同的可逆性.

特征值与特征向量

  1. 特征值和特征向量:非零列向量 α \alpha α使得 A α = λ 0 α A\alpha=\lambda_0 \alpha Aα=λ0α
  2. n阶矩阵A与一个对角矩阵相似的充分必要条件是: A A A n n n个线性无关的特征向量.
  3. 相似矩阵具有相同的特征多项式、相同的特征值.
  4. Hamilton-Caylay 定理:设 A A A是一个 n n n阶矩阵, f ( λ ) = ∣ λ E − A ∣ f(\lambda)=|\lambda E-A| f(λ)=λEA A A A的特征多项式,那么 f ( A ) = 0 f(A)=0 f(A)=0.

矩阵可对角化条件

  1. 属于不同特征值的特征向量一定线性无关.
  2. n n n阶方阵 A A A可对角化的充要条件是:对 A A A的每个特征值 λ i \lambda_i λi, r ( λ E − A ) = n − λ i 的重数 r(\lambda E-A)=n-\lambda_i\text{的重数} r(λEA)=nλi的重数,换言之,属于 λ i \lambda_i λi的线性无关的特征向量的最多个数为 λ i \lambda_i λi的重数.
  3. 如果 n n n矩阵有 n n n个不同的特征值,那么矩阵可以化为对角矩阵.
  4. 如果复系数矩阵 A A A的特征多项式没有重根,那么 A A A可以化为对角形.
  5. 每个 n n n阶复系数矩阵 A A A都与一个若尔当形矩阵矩阵相似.这个若而当形矩除去若而当块的排列次序外,是被矩阵 A A A唯一确定的,它被称为 A A A若而当标准形.

实对称矩阵的对角化

  1. 实对称矩阵的特征多项式的根都是实数.
  2. A A A是一个 n n n阶实对称矩阵,那么可以找到 n n n阶正交矩阵 T T T,使得 T − 1 A T T^{-1}AT T1AT为对角矩阵.
  3. 实对称矩阵的不同特征值的特征向量是正交的.

二次型

二次型及其矩阵表示

  1. 线性变换 X = C Y X=CY X=CY,如果矩阵 C C C是非退化的,那么线性变换就是非退化的.
  2. 合同:对于数域 F F F上的 n n n阶矩阵 A A A B B B,如果有 F F F上的 n n n阶可逆矩阵使得 B = C ′ A C B=C'AC B=CAC,那么 A A A B B B是合同的.
  3. 任意一个实二次型都可以经过正交变换化成标准形,系数为特征多项式的全部特征根.
  4. 数域 F F F上任意一个二次型都可以经过非退化的线性变换化成平方和的形式.
  5. 任一个对称矩阵都合同于一个对角矩阵.
  6. 任一个复数的对称矩阵都合同于一个对角矩阵 [ 1 , 1 , ⋯   , 0 , 0 , ⋯   ] [1,1,\cdots,0,0,\cdots] [1,1,,0,0,]
  7. 任一个实数的对称矩阵都合同于一个对角矩阵 [ 1 , ⋯   , − 1 , ⋯   , 0 , ⋯   ] [1,\cdots,-1,\cdots,0,\cdots] [1,,1,,0,],其中,正平方项的系数为正惯性指数,复平方项的个数为负惯性指数,之差为符号差.
  8. 两个同阶的实对称矩阵合同的充分必要条件是,他们的秩和正惯性指数分别相等.

正定二次型

  1. 正定二次型:实二次型 f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn)对于任意一组不全为零的实数 c 1 , c 2 , ⋯   , c n c_1,c_2,\cdots,c_n c1,c2,,cn都有 f ( c 1 , c 2 , ⋯   , c n ) > 0 f(c_1,c_2,\cdots,c_n)>0 f(c1,c2,,cn)>0.其规范型为单位矩阵.
  2. 正定二次型的充分必要条件:(1)正惯性指数为 n n n.(2)与单位矩阵合同.(3)特征值全大于0.(4)顺序主子式全大于0.
  3. 正定矩阵的行列式大于0.
  • 2
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值