《数学分析(上)》重要概念复习

本文详细复习了数学分析的基础概念,包括实数的定义、确界原理、函数的性质,深入探讨了数列和函数的极限、连续性、导数与微分、函数的极值与凹凸性,以及不定积分和定积分的计算与性质。重点阐述了极限的存在条件和函数的连续性定理,并介绍了微分中值定理及其应用。
摘要由CSDN通过智能技术生成

实数集与函数

实数

  1. 任何实数都可用一个确定的无限小数表示.
  2. 实数的性质:对加减乘除四则运算是封闭的,有序的,传递性,阿基米德性(对任意实数 a a a, b b b b > a > 0 b>a>0 b>a>0,则存在正整数 n n n,使得 n a > b na>b na>b.),稠密性,与数轴上的点一一对应.

数集·确界原理

  1. 上确界 η \eta η:对于实数集中的一个数集 S S S,若数 η \eta η:(i)对一切 x ∈ S x\in S xS,有 x ≤ S x \leq S xS;(ii)对任何 α > η \alpha >\eta α>η,存在 x 0 ∈ S x_0\in S x0S,有 x 0 > α x_0>\alpha x0>α.即满足为上界,且为最小上界.
  2. 确界原理:若数集有上界,则必有上确界.

函数

  1. f ( x ) f(x) f(x)在定义域 D D D上为严格单调函数,则 f f f必有反函数 f − 1 f^{-1} f1,且在定义域 f ( D ) f(D) f(D)上严格单调.

数列极限

  1. 收敛数列的性质:唯一性,有界性,保号性,保不等式性,迫敛性.
  2. 数列收敛的充要条件:数列的所有子列收敛.
  3. 单调有界定理:有界单调数列必有极限.
  4. 致密性定理:任何有界数列必有收敛子列.
  5. 柯西收敛准则

函数极限

函数极限的性质

  1. 函数极限的性质:唯一性,局部有界性,局部保号性,保不等式性,迫敛性.

函数极限存在的条件

  1. 海涅定理(归结原则): f ( x ) f(x) f(x) x 0 x_0 x0存在极限的充分必要条件:任何含于 x 0 x_0 x0邻域中且以 x 0 x_0 x0为极限的数列 x n {x_n} xn,极限 f ( x n ) f({x_n}) f(xn)都存在且相等.(将函数极限转化为数列极限)
  2. f ( x ) f(x) f(x)在右邻域上单调有界,则右极限存在.
  3. 柯西准则

函数的连续性

连续函数的性质

  1. 有界性定理:若函数在闭区间上连续,则在闭区间上有界.
  2. 最大、最小值定理:若函数在闭区间上连续,则在闭区间上有最大、最小值.
  3. 介值性定理、根的存在定理
  4. 反函数的连续性:若函数 f f f在定义域上严格单调并连续,则反函数 f − 1 f^{-1} f1在其定义域上连续.

一致连续

  1. 一致连续性:若任意给 ϵ > 0 \epsilon>0 ϵ>0,存在 δ = δ ( ϵ ) > 0 \delta=\delta (\epsilon)>0 δ=δ(ϵ)>0,使得对任意 ∣ x ′ − x ′ ′ ∣ < δ |x'-x''|<\delta xx<δ,就有 ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ϵ |f(x')-f(x'')|<\epsilon f(x)f(x)<ϵ
  2. 一致连续性定理:若函数在闭区间连续,则函数在闭区间上一直连续.(反证法,致密性定理)

导数和微分

  1. 费马定理:若函数在某点的某邻域上有定义,且在该点可导,若该点为极值点,则必有该点导数为0.
  2. 反函数的导数:若反函数 ϕ ( y ) \phi(y) ϕ(y) y 0 y_0 y0的某邻域上连续、严格单调且不为零,则 f ( x 0 ) f(x_0) f(x0) x 0 = ϕ ( y 0 ) x_0=\phi(y_0) x
  • 8
    点赞
  • 82
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
数学分析中的重要定理 作者:杨艳萍,明清河 著 出版时间:2015年版 内容简介 《数学分析中的重要定理》是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。   《数学分析中的重要定理》从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。   《数学分析中的重要定理》可供数学及相关专业的本科生、研究生和从事数学分析的教学研究人员参考。 目录 第1章 微积分基本定理 1.1 微积分基本定理的历史演变 1.1.1 微积分基本定理的发现阶段 1.1.2 微积分基本定理的创立阶段 1.1.3 微积分基本定理的完善阶段 1.2 微积分基本定理的内容与证明 1.2.1 微积分第一基本定理及其证明 1.2.2 微积分第二基本定理及其证明 1.3 微积分基本定理的相关内容分析 1.3.1 微积分基本定理的条件与结论 1.3.2 微积分基本定理的意义与作用 1.3.3 两种形式微积分基本定理之间的关系 1.3.4 微积分基本定理与其他定理之间的关系 1.4 微积分基本定理的应用 1.4.1 求含有变限积分函数的导数 1.4.2 求含有变限积分函数的极限 1.4.3 求含有变限积分的函数方程的解 1.4.4 讨论含变限积分函数的性质 1.4.5 构造变限积分辅助函数,证明等式与不等式 1.4.6 利用微积分基本定理证明数学分析中的重要定理 1.4.7 利用牛顿莱布尼茨公式计算定积分 1.5 微积分基本定理的推广 1.5.1 原函数存在定理的推广 1.5.2 变限积分求导公式的推广 1.5.3 牛顿莱布尼茨公式的推广 参考文献 第2章 微分中值定理 2.1 微分中值定理的历史演变 2.1.1 对微分中值定理的初步认识 2.1.2 罗尔中值定理的演变 2.1.3 拉格朗日中值定理的演变 2.1.4 柯西中值定理的演变 2.1.5 泰勒中值定理的演变 2.2 微分中值定理的内容与证明 2.2.1 罗尔中值定理及其证明 2.2.2 拉格朗日中值定理及其证明 2.2.3 柯西中值定理及其证明 2.2.4 泰勒中值定理及其证明 2.3 微分中值定理的相关内容分析 2.3.1 微分中值定理的背景 2.3.2 微分中值定理的条件与结论 2.3.3 微分中值定理的意义与作用 2.3.4 四个微分中值定理之间的关系 2.3.5 微分中值定理的中值点 2.4 微分中值定理的应用 2.4.1 罗尔中值定理的应用 2.4.2 拉格朗日中值定理的应用 2.4.3 柯西中值定理的应用 2.4.4 泰勒中值定理的应用 2.5 微分中值定理的推广 2.5.1 罗尔中值定理的推广 2.5.2 拉格朗日中值定理的推广 2.5.3 柯西中值定理的推广 参考文献 第3章 积分中值定理 3.1 积分中值定理的历史演变 3.2 积分中值定理的内容与证明 3.2.1 积分第一中值定理及其证明 3.2.2 推广的积分第一中值定理及其证明 3.2.3 积分第二中值定理及其证明 3.2.4 加强条件的积分第二中值定理及其证明 3.3 积分中值定理的相关内容分析 3.3.1 积分中值定理的几何意义 3.3.2 积分中值定理的条件与结论 3.3.3 微分中值定理与积分中值定理之间的关系 3.3.4 积分中值定理的中值点 3.4 积分中值定理的应用 3.4.1 估计某些定积分的值 3.4.2 求含有积分的极限 3.4.3 证明含有积分的不等式 3.4.4 证明含有中值点的积分问题 3.4.5 讨论含积分函数的收敛性与单调性 3.5 积分中值定理的改进与推广 3.5.1 积分中值定理的改进 3.5.2 积分第一中值定理的推广 3.5.3 积分第二中值定理的推广 参考文献 第4章 积分关系定理 4.1 积分关系定理的历史演变 4.2 积分关系定理的内容与证明 4.2.1 格林公式及其证明 4.2.2 高斯公式及其证明 4.2.3 斯托克斯公式及其证明 4.3 积分关系定理的相关内容分析 4.3.1 各类积分的起源与几何意义 4.3.2 各类积分之间的关系 4.3.3 各类积分之间的转化 4.3.4 四个积分公式之间的关系 4.3.5 四个积分公式的统一形式 4.4 积分关系定理的应用 4.4.1 格林公式的应用 4.4.2 高斯公式的应用 4.4.3 斯托克斯公式的应用 4.5 积分关系定理的推广 4.5.1 格林公式的推广 4.5.2 高斯公式的推广 4.5.3 斯托克斯公式的推广 参考文献 第5章 极限关系定理 5.1 海涅定理的历史演变 5.2 海涅定理的内容与证明 5.3 海涅定理的相关内容分析 5.3.1 海涅定理的条件与结论 5.3.2 海涅定理的意义与作用 5.4 海涅定理的应用 5.4.1 证明函数极限不存在 5.4.2 证明函数极限的性质 5.4.3 求数列的极限 5.4.4 判断级数的敛散性 5.4.5 判断函数的可导性 5.4.6 证明函数为常量函数 5.5 海涅定理的推广 5.5.1 把任意数列 推广为单调数列 5.5.2 把 存在极限 推广为非正常极限 5.5.3 把函数极限存在推广为函数连续及单侧连续 5.5.4 把任意数列 推广为有理(无理)数列 5.5.5 把函数极限存在推广为含参变量广义积分一致收敛 参考文献 第6章 闭区间上连续函数的性质定理 6.1 闭区间上连续函数性质定理的历史演变 6.2 闭区间上连续函数性质定理的内容与证明 6.2.1 有界性定理及其证明 6.2.2 最值性定理及其证明 6.2.3 零点存在定理及其证明 6.2.4 介值性定理及其证明 6.2.5 一致连续性定理及其证明 6.3 闭区间上连续函数性质定理的相关内容分析 6.3.1 闭区间上连续函数性质定理的理解 6.3.2 闭区间上连续函数性质定理的几何意义 6.3.3 闭区间上连续函数性质定理的条件与结论 6.3.4 闭区间上连续函数性质定理的统一表述 6.4 闭区间上连续函数性质定理的推广 6.4.1 有界性定理的推广 6.4.2 最值性定理的推广 6.4.3 零点存在定理的推广 6.4.4 介值性定理的推广 6.4.5 一致连续性定理的推广 6.5 闭区间上连续函数性质定理的应用 6.5.1 有界性定理的应用 6.5.2 最值性定理的应用 6.5.3 零点存在定理的应用 6.5.4 介值性定理的应用 6.5.5 一致连续性定理的应用 参考文献 第7章 实数连续性(完备性)定理 7.1 实数连续性定理的历史演变 7.2 实数连续性定理的内容与证明 7.2.1 确界存在定理及其证明 7.2.2 单调有界定理及其证明 7.2.3 柯西收敛准则及其证明 7.2.4 区间套定理及其证明 7.2.5 聚点定理及其证明 7.2.6 致密性定理及其证明 7.2.7 有限覆盖定理及其证明 7.3 实数连续性定理的相关内容分析 7.3.1 实数连续性定理的条件与结论 7.3.2 实数连续性定理的内在联系及等价性 7.3.3 实数连续性定理所提供的数学方法 7.3.4 实数连续性定理所提供的工具 7.4 实数连续性定理的推广 7.4.1 确界存在定理的推广 7.4.2 单调有界定理的推广 7.4.3 柯西收敛准则的推广 7.4.4 区间套定理的推广 7.4.5 聚点定理的推广 7.4.6 致密性定理的推广 7.4.7 有限覆盖定理的推广 7.5 实数连续性定理的应用 7.5.1 确界存在定理的应用 7.5.2 单调有界定理的应用 7.5.3 柯西收敛准则的应用 7.5.4 区间套定理的应用 7.5.5 聚点定理的应用 7.5.6 致密性定理的应用 7.5.7 有限覆盖定理的应用 参考文献 总参考文献
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值