数学中几种积:点积(数量积/标量积/内积)、叉积(叉乘/向量积)、外积(张量积/Kronecker积)、哈达玛积(元素积)

本文深入解析向量和矩阵的基本运算,包括点积、叉积、外积及哈达玛乘积的概念、代数定义与应用实例,是理解线性代数核心概念的必备读物。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 点积

点积(dot product),又称数量积、标量积.

输入: 一种接受两个等长的数字序列(通常是坐标向量);
输出:返回单个数字。

在欧几里几何空间中,向量的点积运算又称为内积

表示
在这里插入图片描述
代数定义
在这里插入图片描述
推广
矩阵的点积/内积,为对应矩阵元素的积之和。

A,B是定义为两个相同大小的矩阵。
在这里插入图片描述
值得注意的是,一些对于A,B大小不同,可以分别把它们组成的向量进行内积。
比如在numpy中:

import numpy
x = numpy.mat([[1, 2], [3, 4]])
y = numpy.mat([10, 20])
print("Matrix inner:")
print(numpy.inner(x, y))
''' Output:
Matrix inner:
[[ 50]
 [110]]
'''

2 叉积

叉积(Cross product),又称向量积(Vector product)、叉乘

输入: 对三维空间中的两个向量;

输出: 返回一个向量;

表示
在这里插入图片描述
代数定义

叉积 a × b {\displaystyle \mathbf {a} \times \mathbf {b} } a×b 是与 a {\displaystyle \mathbf {a} } a b {\displaystyle \mathbf {b} } b都垂直的向量 c {\displaystyle \mathbf {c} } c

其方向由右手定则决定,模长等于以两个向量为边的平行四边形的面积。

在这里插入图片描述
在这里插入图片描述
n {\displaystyle \mathbf {n} } n 是与 a, b都垂直的单位向量。

推广
在这里插入图片描述
矩阵表示:
在这里插入图片描述
在这里插入图片描述

3 外积

外积(Outer product) ,又名张量积
外积与向量的内积相对, 是矩阵的克罗内克积的一种特例。

输入: 两个向量。

输出: 矩阵。

表示

代数定义
在这里插入图片描述
在这里插入图片描述
推广

矩阵的外积:克罗内克积(Kronecker product)
如果A是一个 m × n 的矩阵,而B是一个 p × q 的矩阵,克罗内克积 A ⊗ B {\displaystyle A\otimes B} AB则是一个 m p × n q mp × nq mp×nq 的分块矩阵.

示例:
在这里插入图片描述

4 哈达玛乘积 (矩阵)

哈达玛积(Hadamard product) ,又名舒尔积逐项积

在机器学习中,哈达玛积还称为,元素积(element-wise product/point-wise product)。

输入: 两个相同形状的矩阵。

输出: 具有同样形状的、各个位置的元素等于两个输入矩阵相同位置元素的乘积的矩阵。

表示
A ∘ B A ∘ B AB

代数定义
在这里插入图片描述

推广

如果矩阵维度不一样,矩阵/向量的哈达玛积计算如下:
在这里插入图片描述


参考:

  1. 矩阵运算
  2. wiki 点积;
  3. wiki 叉积
  4. wiki 哈达玛乘积
  5. wiki 外积
  6. 克劳内克积
向量是两个基本的向量运算。下面分别对它们进行解释。 1.向量(Dot Product) 向量是两个向量之间的一种运算,其结果是一个标量(即一个实数)。在二维空间中,两个向量可以通过以下公式计算: a · b = ax * bx + ay * by 其中,a和b是两个向量,ax和ay是向量a的x和y分量,bx和by是向量b的x和y分量。 在三维空间中,两个向量可以通过以下公式计算: a · b = ax * bx + ay * by + az * bz 其中,a和b是两个向量,ax、ay和az是向量a的x、y和z分量,bx、by和bz是向量b的x、y和z分量。 的结果可以用来判断两个向量的夹角、向量投影、向量的长度等等。 2.向量(Cross Product) 向量是两个向量之间的一种运算,其结果是一个向量。在三维空间中,两个向量可以通过以下公式计算: a × b = (ay * bz - az * by) * i + (az * bx - ax * bz) * j + (ax * by - ay * bx) * k 其中,a和b是两个向量,i、j和k是三个坐标轴的单位向量的结果是一个垂直于两个向量向量,其方向可以通过右手定则来确定。的结果可以用来计算平面的法向量、判断两个向量的方向、计算三角形面、计算旋转轴等等。 需要注意的是,是两个不同的运算,它们的结果都是向量标量,但它们的含义和用法是不同的。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rosefunR

你的赞赏是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值