参考博客:https://blog.csdn.net/u011974639/article/details/78985130
1. 概述
场景解析的目的旨在为每一个像素分配一个类别标签。可以同时预测到标签,位置,以及每一个元素的形状。
目前场景解析框架多数依赖于FCN, 取得较好的效果。但由于FCN存在缺少充分利用全局场景类别线索的缺点,使场景解析仍然面临有限制:多样化的场景和不受限制的词汇。比如对于相同的形状则分辨不出类别。
因此,本论文中将像素级功能扩展到专门设计的全局金字塔池中。将局部和全局线索联合起来共同使最终预测更加可靠。
本文的贡献如下:
一,提出金字塔场景解析网络,将其嵌入到基于FCN网络中。
二,在基于深度监督损失的resnet上制定优化战略。
三,构建了一个场景解析和语义分割的实用系统。
2. 网络结构
PSPNet提出的原因:CNN的感受野在理论上是非常小的,特别是在高层次的层面上;直接融合特征以形成单个矢量即全局平均化可能会失去空间关系并导致模糊。
PSPNet中:层次全局优先级。此全局优先级旨在消除CNN的固定大