训练自己的DCGAN

ghttps://github.com/carpedm20/DCGAN-tensorflow

源码链接

链接:https://pan.baidu.com/s/1GLVmlohUaQcjnxj33UUAUg 
提取码:gmo7 
--来自百度网盘超级会员V3的分享

修改后的代码

链接:https://pan.baidu.com/s/1748yptqZYZcZ6MsBCoz_lg 
提取码:biha 
--来自百度网盘超级会员V3的分享

数据集

这是我的环境 (3.7)

PS C:\Users\pc\Desktop\DCGAN-tensorflow-master> pip list
Package                      Version
---------------------------- ---------
absl-py                      1.1.0
astor                        0.8.1
astunparse                   1.6.3
baidu-aip                    2.2.18.0
cachetools                   5.2.0
certifi                      2021.10.8
charset-normalizer           2.0.12
colorama                     0.4.5
flatbuffers                  1.12
gast                         0.2.2
google-auth                  2.9.0
google-auth-oauthlib         0.4.6
google-pasta                 0.2.0
grpcio                       1.47.0
h5py                         3.7.0
idna                         3.3
imageio                      2.19.3
importlib-metadata           4.12.0
keras                        2.9.0
Keras-Applications           1.0.8
Keras-Preprocessing          1.1.2
libclang                     14.0.1
Markdown                     3.3.7
MouseInfo                    0.1.3
numpy                        1.21.6
oauthlib                     3.2.0
opencv-python                4.6.0.66
opt-einsum                   3.3.0
packaging                    21.3
Pillow                       9.1.1
pip                          22.1.2
protobuf                     3.19.4
pyasn1                       0.4.8
pyasn1-modules               0.2.8
PyAutoGUI                    0.9.53
PyGetWindow                  0.0.9
PyMsgBox                     1.0.9
pyparsing                    3.0.9
pyperclip                    1.8.2
pypiwin32                    223
PyRect                       0.2.0
PyScreeze                    0.1.28
pytweening                   1.0.4
pywin32                      304
requests                     2.27.1
requests-oauthlib            1.3.1
rsa                          4.8
scipy                        1.7.3
setuptools                   62.3.2
six                          1.16.0
tensorboard                  1.14.0
tensorboard-data-server      0.6.1
tensorboard-plugin-wit       1.8.1
tensorflow                   1.14.0
tensorflow-estimator         1.14.0
tensorflow-io-gcs-filesystem 0.26.0
termcolor                    1.1.0
tqdm                         4.64.0
typing_extensions            4.2.0
urllib3                      1.26.8
Werkzeug                     2.1.2
wheel                        0.37.1
wrapt                        1.14.1
zipp                         3.8.0

首先我对图片做了一个resize

import os
from PIL import Image


def resize(old_path, new_path, size, resample):
    """ 
     通过指定的resample方式调整old_path下所有的jpg图片为指定的size,并保存到new_path下 
    """
    if os.path.isdir(old_path):
        for child in os.listdir(old_path):

            if child.find('.jpg') > 0:
                im = Image.open(old_path + child)
                im_resized = im.resize(size=size, resample=resample)
                if not os.path.exists(new_path):
                    os.makedirs(new_path)
                print(child, 'resize successfully!')
                im_resized.save(new_path + child, im.format)
            child_path = old_path + child + '/'

            resize(child_path, new_path, size, resample)


if __name__ == "__main__":
    old_path = r'./DCGAN-tensorflow-master\data\licence/'
    new_path = r'./DCGAN-tensorflow-master\data\1/'
    size = (240, 80)
    resample = Image.BILINEAR # 使用线性插值法重采样
    resize(old_path, new_path, size, resample)

填好路径

开始训练

 

 权重和图片在out

报错一:

 主要原因 图片尺寸 写的不对。

未改

修改后

 

报错2:

训练中出现  one pic error!...    会导致图片无法保存

具体修改去看  我已经改好的utils.py 代码

我看网上有人这么改

把utils.py 里面的image_manifold_size替换了(没试过)

# def image_manifold_size(num_images):
#   #manifold_h = int(np.floor(np.sqrt(num_images)))
#   #manifold_w = int(np.ceil(np.sqrt(num_images)))
#   manifold_w = int(16)
#   manifold_h = int(num_images/16)
#   assert manifold_h * manifold_w == num_images
#   return manifold_h, manifold_w

 建议

在main中 找到

flags.DEFINE_integer("batch_size", 1, "The size of batch images [64]") #batch_size大小,所谓的每次迭代的图像数量
当设为1的效果

 设为16

 设为64

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WangSaLe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值