本文由葛雨明,汪洋,韩庆文联合创作
摘要
数字孪生(DT)可以虚拟化地呈现出系统的整个生命周期,非常适合在自动驾驶测试中使用。提出了在有限环境下利用 DT 进行网联自动驾驶测试的方法,即在自动驾驶的仿真测试环境中,利用 DT 的映射实现虚拟复杂道路场景下真实的网联自动驾驶车辆测试。相关实验说明,该方法能够有效地支持开展网联自动驾驶测试。
数字孪生(DT)是物理系统(物理孪生)的数字化表示,能够模拟运行系统的整个生命周期并与物理孪生进行同步的映射。DT 的概念始于 2002 年,最初被用于航空航天领域。最近,其他一些工业部门如制造业、工业工程,以及机器人领域也逐步开始了解和尝试这项技术。
随着自动驾驶的发展,对 DT 功能的测试和验证成为自动驾驶汽车研发的重大挑战之一。一些研究人员认为使用仿真测试可以很好地解决这一难题 ,例如在虚拟仿真中,进行的软件测试(SIL)、硬件在环测试(HIL)、车辆在环测试(VEHIL)以及混合仿真测试。它可以快速模拟任何场景,但不能验证真实的情况。相比仿真测试, 传统汽车行业更依赖现场测试。然而, 真正的道路测试在极端情况下是昂贵且费时的,有一些场景甚至无法进行测试。2017 年,M-City 发布了一份研究报告,提出了一种数据驱动的方法来评估自动驾驶汽车。与纯虚拟仿真不同的是,它使用真实世界的驾驶数据来构建测试场景。这是一种面向DT 的方法 , 但这种方法是从主动安全的角度发展起来的,没有引入车用无线通信(V2X)技术。
V2X 技术不仅可以为道路车辆提供非视距的感知信息,还可以在车辆和云数据中心之间建立通信链路;因此,我们认为 V2X 技术可以作为连接物理空间和网络空间的纽带,在基于DT 的自动驾驶测试中发挥重要作用。V2X 技术可以将场景信息发送到道路的被测车辆上,并提供道路虚拟测试功能。尽管 DT 被认为是一项颠覆性的技术,但它仍处于概念阶段,只有少数研究专门讨论了其在制造领域的构建和实现方法。所以,目前还没有成熟的基于 DT 的自动驾驶测试方案。近几年,中国信息通信研究院研发布局了基于 DT 的网联自动驾驶测试原型系统,利用 V2X 技术实现传感器数据上传和虚拟场景信息发布的全过程,并进行了道路车辆测试。相应的测试结果表明,该系统能够支持低延迟的网联自动驾驶测试。
1 基于DT的网联自动驾驶测试框架
在实践中,不同行业对于 DT 的定义和理解可能不同。自动驾驶开发人员将其视为一套增强现实方案。在某种意义上,面向 DT 的测试系统是指通过通信网络在现实世界(物理空间) 收集数据,利用网络空间的大规模数据处理技术对数据进行分析,并将结果反馈到物理空间来解决现实世界问题的信息物理系统(CPS)。每个 CPS 包括智能机器、存储系统和生产设施,它们可以自主和智能地交换信息,做出决策并触发行动,能够互相控制。