动手学PyTorch | (35) 长短期记忆(LSTM)

本节将介绍另一种常⽤的⻔控循环神经网络:长短期记忆(long short-term memory,LSTM)。它⽐⻔控循环单元的结构稍微复杂一点。

目录

1. 长短期记忆

2. 读取数据集

3. 从0开始实验

4. 简洁实现

5. 小结


1. 长短期记忆

LSTM 中引⼊了3个门,即输入门(input gate)、遗忘门(forget gate)和输出门(output gate),以及与隐藏状态形状相同的记忆细胞(某些文献把记忆细胞当成⼀种特殊的隐藏状态),从⽽记录额外的信息。

  • 输入门、遗忘门和输出门

与⻔控循环单元中的􏰀重置门和更新门一样,如下图所示,⻓短期记忆的⻔的输⼊均为当前时间步输⼊X_t与上一时间步隐藏状态H_{t-1},输出由激活函数为sigmoid函数的全连接层计算得到。如此一来,这3个门元素的值域均为[0,1].

具体来说,假设隐藏单元个数为h,给定时间步t的⼩批量输⼊X_t \in R^{n\times d}(样本数为d,输入个数为d)和上⼀时间步隐藏状态H_{t-1} \in R^{n\times h}.时间步t的输⼊⻔I_t \in R^{n\times h}、遗忘门F_t \in R^{n\times h}和输出门O_t \in R^{n\times h}分别计算如下:

其中的W_{xi},W_{xf},W_{xo} \in R^{d\times h};W_{hi},W_{hf},W_{ho} \in R^{h\times h}是权重参数,b_i,b_f,b_o\in R^{1\times h}是偏差参数。

  • 候选记忆细胞
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值