Visual Prompt Tuning

我们提出视觉提示调整(VPT)来适应大型预先训练的视觉转换器模型。VPT将少量可学习的参数注入transformers的输入空间,并在下游训练阶段保持主干冻结。整体框架如图

(a)为每个变压器-编码器层的输入(VPT-deep)预先设置一组可学习的参数;

(b) 仅将提示参数插入第一层的输入(VPTshallow)。

在下游任务的培训过程中,只有提示和线性头的参数会更新,而整个变压器编码器会被冻结。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值