我们提出视觉提示调整(VPT)来适应大型预先训练的视觉转换器模型。VPT将少量可学习的参数注入transformers的输入空间,并在下游训练阶段保持主干冻结。整体框架如图
(a)为每个变压器-编码器层的输入(VPT-deep)预先设置一组可学习的参数;
(b) 仅将提示参数插入第一层的输入(VPTshallow)。
在下游任务的培训过程中,只有提示和线性头的参数会更新,而整个变压器编码器会被冻结。
我们提出视觉提示调整(VPT)来适应大型预先训练的视觉转换器模型。VPT将少量可学习的参数注入transformers的输入空间,并在下游训练阶段保持主干冻结。整体框架如图
(a)为每个变压器-编码器层的输入(VPT-deep)预先设置一组可学习的参数;
(b) 仅将提示参数插入第一层的输入(VPTshallow)。
在下游任务的培训过程中,只有提示和线性头的参数会更新,而整个变压器编码器会被冻结。