人工智能 (AI) 领域正以前所未有的速度发展,世界各地的研究人员都在不断突破可能的界限。2024 年,人工智能研究界发表了大量开创性的论文,引起了整个行业的关注。在这篇全面的博客文章中,我们将深入探讨今年被引用次数最多的 10 篇人工智能研究论文,探索塑造这一充满活力的领域未来的关键见解和创新。
数据来源
https://arxiv.org/
为了编制这份名单,我们分析了流行的人工智能研究平台arXiv的引用数据。截至 2024 年 11 月,arXiv 上的人工智能类别 (cs.AI) 共发表了 32,420 篇论文,比上一年的 17,420 篇增加了一倍多。这种指数级增长凸显了人工智能领域的快速进步。
虽然 arXiv 不是 AI 研究的唯一平台,但它被广泛认为是该领域最新、最有影响力论文的首选来源。通过关注 arXiv 上被引用次数最多的论文,我们可以获得有关最受关注和推动最重大突破的 AI 领域的宝贵见解。
值得注意的是,本文中提供的引用计数在撰写时是准确的,但随着越来越多的研究人员发现和巩固这些论文中提出的开创性工作,引用计数可能会发生变化。
2024 年引用次数最多的 10 篇 AI 研究论文
10. Deep Seek Coder: Transparent and State-of-the-Art Code-Specific Pre-Training
机构:DeepSeek-AI
论文《Deep Seek Coder: Transparent and State-of-the-Art Code-Specific Pre-Training》被引用 301 次,是 2024 年被引用次数第 10 的人工智能研究论文。该论文于 2024 年 1 月发表,重点介绍了 Deep Seek Coder 模型的强大功能,该模型于 2023 年 11 月公开发布。
本文的关键创新在于对包含两万亿个 token 的海量数据集进行广泛的代码预训练,这使得 Deep Seek Coder 模型能够在代码相关任务中取得最佳结果,甚至超越 Codex 和 GPT-3.5 等闭源模型。本文还强调了