大模型-模型架构-transformer模型介绍

一、transformer模型简介

  • 当前主流大模型都是基于transformer进行设计的
  • transformer模型是有多层多头自注意力模块堆叠而成的神经网络模型
  • transformer模型由解码器与编码器构成,二者可独立使用,例如BERT是基于编码器架构的模型,GPT是基于解码器架构的模型
  • 与早期模型相比,大模型使用了更长的向量维度、更深的层数,进而包含了更大规模的模型参数,并主要使用解码器架构,对transformer本身架构和配置改变不大
  • 编码器与解码器都有生成内容的能力

二、模型架构

编码器架构

输出数据
^
…(与前面相同,多层叠加)
^
残差连接和层归一化
前馈网络层
^
残差连接和层归一化
多头自注意力层
^
输入编码(词建模)
^
输入数据

解码器架构

输出数据
^
归一化指数函数
全连接层
^
…(与前面相同,多层叠加)
^
残差链接和层归一化
前馈网络层
^
残差链接和层归一化
多头自注意力层
^
残差连接和层归一化
掩码多头自注意力层
^
输入编码(词建模)
^
输入数据

三、模型组成

输入编码

  • 定义:将词元序列转换成词向量和位置向量的过程
  • 功能:词元序列->输入编码模块->词向量序列
  • 为什么要有这一层:为了捕捉词汇本身的语义,每个词元会被输入编码模块转换成可学习的、有固定维度的向量
  • 位置向量分类
    • 绝对位置(会限制长文本处理能力)
    • 相对位置

多头自注意力机制

  • 特点
    • transformer核心创新
    • 相比于 循环神经网络(RNN)和卷积神经网络(CNN),多头自注意力机制可以直接建模任意词元之间的交互关系
  • 原理:通过并行计算多个自注意力头来增强模型表达能力、稳定性和表示能力,解决了单头注意力机制在捕捉复杂依赖关系、多样化特征以及提高模型稳定性和泛化能力方面的局限性
  • 计算过程:
    (1)输入数据(词元向量序列)
    (2)线性变换生成查询(Q)、键(K)、值(V)
    (3)计算注意力权重
    (4)计算加权求和值向量
    (5)组合多个头结果

前馈网络层

  • 作用:解决自注意力机制在表达能力和提取特征方面的局限性,提升模型处理复杂序列数据的表现
  • 原理:通过引入非线性、增加模型深度、增加局部特征表现能力、提供更多参数化表示
  • 意义:前馈网络层与多头自注意力机制,是transformer模型基础
  • 结构:
    • 输入的向量经过第一个线性变换、生成一个中间表示
    • 中间表示经过一个非线性激活函数(默认ReLU)进行激活
    • 激活后的数据再经过一次线性变换,生成最终输出

残差连接

  • 作用:将输入与该层输出相加,实现了信息再不同层之间的跳跃传递,缓解梯度爆炸和消失的问题

掩码自注意力

  • 作用:用来在计算注意力信息时,掩盖当前位置之后的词,以保证生成目标序列时,不受未来信息影响

全连接层

  • 作用:通常用于将数据映射到输出空间,起到信息整合和特征转换的作用
  • 特点:全连接层是一个神经网络层,其中每一个神经元都与上一层的神经元相连接

归一化指数函数

  • 作用:将输入向量转换为概率分布的函数,常用于分类任务中生成多类别概率分布
CEF3,全称为Chromium Embedded Framework 3,是由Google Chrome浏览器的开源项目Chromium发展而来的框架。这个框架允许开发者将Chrome的渲染引擎嵌入到他们的应用程序中,从而实现Web内容的显示和交互。CEF3的最新版本为3.2623.1401.gb90a3be,表明它已经过多次更新和优化,以提供更好的性能和兼容性。 在这个特定的压缩包中,包含了CEF3的Windows 32位和64位版本。这使得开发者的应用可以适应不同的系统环境,无论是32位还是64位的操作系统都能运行。同时,这个版本的CEF3特别指出它支持MP3和MP4音频视频格式以及Flash技术。这意味着通过CEF3,开发者可以在他们的应用程序中内嵌多媒体内容,包括播放音频文件和在线视频。 `macros.cmake`是CMake构建系统中的宏定义文件,用于简化和标准化构建过程。`cefclient.gyp`和`cef_paths.gypi`是CEF的构建配置文件,它们定义了项目的结构和依赖项,通常用于构建CEF的示例客户端应用程序`cefclient`。`cef_paths2.gypi`可能是另一个与路径相关的配置文件,可能用于处理多平台的路径设置问题。 `README.txt`和`LICENSE.txt`分别提供了项目的基本信息和许可协议,开发者在使用这些资源时应仔细阅读以确保遵循正确的使用条款。`CMakeLists.txt`是CMake构建系统的主配置文件,它指导CMake如何编译和链接源代码。 `libcef_dll`目录包含CEF的动态链接库文件,这些文件是CEF的核心组件,使得应用程序能够调用CEF的功能。`cefclient`是CEF的示例客户端应用程序,开发者可以通过修改和运行这个示例来了解如何在自己的项目中集成CEF。`Release_x64`目录包含了64位版本的编译输出,包括编译后的可执行文件和其他相关资源。 这个压缩包提供了CEF3的完整构建环境和一个运行示例,对于希望在Windows平台上开发支持多媒体(如MP3和MP4)以及Flash内容的桌面应用程序的开发者来说,是一个非常有价值的资源。通过学习和利用这些文件,开发者可以快速地掌握CEF3的使用,并将其整合到自己的产品中,实现强大的Web界面和多媒体功能。
在Vue3项目中,静态资源管理是一个至关重要的部分,它涉及到应用的视觉效果和用户体验。在本项目实践中,我们关注的是“assets”目录,这是Vue3项目中存储静态资源如图片、字体、样式文件等的地方。下面将详细介绍Vue3项目中的静态资源管理,以及与这些文件相关的知识点。 `assets`目录是Vue CLI创建的默认项目结构的一部分,它是用来存放应用的非JavaScript静态资产的。在Vue3中,`assets`目录下的文件会被webpack处理,但不进行代码转换,这确保了原始资源的完整性。 1. **图片资源**: - `login_bg.jpg`:登录背景图,通常用于提供登录页面的视觉效果,使用户感到舒适并提升品牌形象。 - `avatar.jpg`:可能代表用户的头像,通常用于个人资料或登录页面,允许用户上传或选择自己的图片。 - `cover.jpg`:可能是页面的封面图片,用于装饰和展示目的。 - `logo2.png`和`logo.png`:这两个可能是不同的应用图标,通常在网站的头部、页脚或导航栏中使用,有时用于品牌识别。 - `default.png`:可能作为默认图像使用,当没有用户指定图像或加载失败时显示。 - `login_title.png`:登录页面的标题图像,用于增强登录界面的设计感。 2. **样式文件**: - `main.scss`:这是一个Sass(SCSS)文件,Sass是CSS的一个预处理器,允许使用变量、嵌套规则、混合、函数等特性来编写更易于维护和扩展的CSS代码。`main.scss`通常是全局样式表,定义了项目的主样式,包括颜色、字体、布局等。 在Vue3项目中,我们可以使用`<img>`标签或者`require()`或`import`语法来引用这些静态资源。例如,图片通常会这样引用: ```html <img src="@/assets/login_bg.jpg" alt="Login Background"> ``` 这里的`@`符号是Vue CLI配置中的别名,它指向`src`目录,所以`@/assets/`实际指向了`src/assets/`。 对于样式文件,我们可以在组件内部或者全局的`main.scss`文件中引入: ```scss @import "~@/assets/main.scss"; ``` `~`符号告诉webpack这是一个模块导入,需要通过loader(如style-loader和css-loader)处理。 Vue3项目中的静态资源管理涉及到了文件组织、图片引用、样式编译等多个方面。理解如何有效地管理和利用这些资源对于构建高质量的前端应用至关重要。通过合理地组织和引用静态资源,可以提高代码的可读性,同时也能优化应用的性能,比如通过懒加载或雪碧图技术来减少HTTP请求和优化加载速度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值