【YOLOv8改进 - SPPF】发论文神器!LSKA注意力改进SPPF,增强多尺度特征提取能力,高效涨点!!!

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240527212823405

摘要

带有大卷积核注意力(LKA)模块的视觉注意网络(VAN)在一系列基于视觉的任务上表现出色,超越了视觉Transformer(ViTs)。然而,这些LKA模块中的深度卷积层随着卷积核尺寸的增加,会导致计算和内存占用的二次增长。为了解决这些问题并使在VAN的注意力模块中使用超大卷积核成为可能,我们提出了一种大可分卷积核注意力模块家族,称为LSKA。LSKA将深度卷积层的二维卷积核分解为串联的水平和垂直一维卷积核。与标准LKA设计不同,这种分解方法使得可以直接在注意力模块中使用带有大卷积核的深度卷积层,而不需要额外的模块。我们证明了在VAN中使用的LSKA模块可以在计算复杂度和内存占用更低的情况下,达到与标准LKA模块相当的性能。我们还发现,随着卷积核尺寸的增加,提出的LSKA设计使VAN更倾向于关注物体的形状而不是纹理。此外,我们还在五种受损版本的ImageNet数据集上,对VAN、ViTs以及最新的ConvNeXt中的LKA和LSKA模块进行了稳健性基准测试,这些数据集在以往的工作中很少被探索。我们广泛的实验结果表明,随着卷积核尺寸的增加,提出的VAN中的LSKA模块显著减少了计算复杂度和内存占用,同时在对象识别、对象检测、语义分割和稳健性测试上表现优于ViTs、ConvNeXt,并与VAN中的LKA模块性能相当。代码可在 https://github.com/StevenLauHKHK/Large-Separable-Kernel-Attention 获得。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

Large Separable Kernel Attention (LSKA)是一种新颖的注意力模块设计,旨在解决Visual Attention Networks (VAN)中使用大内核卷积时所面临的计算效率问题。LSKA通过将2D深度卷积层的卷积核分解为级联的水平和垂直1-D卷积核,从而实现了对大内核的直接使用,无需额外的模块。

概述

  1. 基本设计

    • LSKA将2D深度卷积层的卷积核分解为级联的水平和垂直1-D卷积核。
    • 这种分解设计使得LSKA可以直接使用深度卷积层的大内核,无需额
### YOLOv8SPPF模块的优化方法 为了增强YOLOv8对于不同尺度目标物体检测的能力,可以考虑对现有的SPPF(Spatial Pyramid Pooling - Fast)模块进行一系列改进措施。这些改进不仅能够提高模型性能,还能保持计算效率。 #### 增加池化层多样性 通过引入多种尺寸的最大池化操作来替代单一大小的最大池化核,在原有基础上加入更多层次的空间金字塔结构[^1]。这有助于捕捉更丰富的空间信息并改善特征表示的质量: ```python class SPPFLayer(nn.Module): def __init__(self, c1, k=(5, 9, 13)): super().__init__() self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x//2) for x in k]) def forward(self, x): return torch.cat([x]+[m(x) for m in self.m], dim=1) ``` 此代码片段展示了如何扩展传统的最大池化操作至多个不同的内核尺寸,从而构建更加灵活有效的SPPF层。 #### 调整通道数比例 适当调整输入到下一层之前经过融合后的特征图数量,即改变卷积层输出通道的数量比率。这样可以在不显著增加参数量的情况下进一步提升表达力和鲁棒性。 #### 应用注意力机制 集成先进的注意力机制如SENet或CBAM等,使网络具备自适应调节重要区域权重的功能。这对于复杂场景下的细粒度识别尤为重要,因为这类技术可以帮助突出显示那些更具区分性的局部特性。 ```python import math from torchvision import models def se_block(input_channels, reduction_ratio=16): squeezed_channels = _make_divisible(input_channels / reduction_ratio, 8) fc1 = nn.Conv2d(input_channels, squeezed_channels, kernel_size=1) relu = nn.ReLU(inplace=True) fc2 = nn.Conv2d(squeezed_channels, input_channels, kernel_size=1) return nn.Sequential( GlobalAvgPool(), fc1, relu, fc2, HardSigmoid() ) ``` 上述代码实现了简化版的SE Block用于实现通道维度上的注意力机制,可作为改进方案之一融入现有架构之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值