高斯分布的数乘,相加,相乘还是高斯分布吗?

高斯分布的数乘,相加,相乘还是高斯分布吗?

 首先当随机变量 Y = g ( X ) Y=g(X) Y=g(X)时,两者的PDF具有这样的关系 f Y ( y ) = f X ( x ) ∣ d x d y ∣ f_{Y}(y)=f_{X}(x)\lvert\frac{dx}{dy}\rvert fY(y)=fX(x)dydx
具体来说 F Y ( y ) = P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = P ( X ≤ g − 1 ( y ) ) = F X ( g − 1 ( y ) ) = F X ( x ) F_{Y}(y)=P(Y\leq y)=P\left(g(X)\leq y\right)=P\left(X\leq g^{-1}(y)\right)=F_{X}( g^{-1}(y)) = F_{X}(x) FY(y)=P(Yy)=P(g(X)y)=P(Xg1(y))=FX(g1(y))=FX(x)
知道上述关系之后,考虑随机变量 Y = a X Y=aX Y=aX,其中 X ∼ N ( μ , σ 2 ) X\sim\mathcal{N}(\mu,\sigma^2) XN(μ,σ2),则 f Y ( y ) = 1 a f X ( x ) = 1 a f X ( y a ) = 1 2 π a σ exp ⁡ ( − ( y a − μ ) 2 2 σ 2 ) = 1 2 π ( a σ ) exp ⁡ ( − ( y − a μ ) 2 2 ( a σ ) 2 ) \begin{aligned}f_{Y}(y)&=\frac{1}{a}f_{X}(x)\\ &=\frac{1}{a}f_{X}(\frac{y}{a})\\ &=\frac{1}{\sqrt{2\pi}a\sigma}\exp(-\frac{(\frac{y}{a}-\mu)^2}{2\sigma^2})\\ &=\frac{1}{\sqrt{2\pi}(a\sigma)}\exp(-\frac{(y-a\mu)^2}{2(a\sigma)^2}) \end{aligned} fY(y)=a1fX(x)=a1fX(ay)=2π aσ1exp(2σ2(ayμ)2)=2π (aσ)1exp(2(aσ)2(yaμ)2)
所以 Y ∼ N ( a μ , ( a σ 2 ) ) Y\sim\mathcal{N}(a\mu,(a\sigma^2)) YN(aμ,(aσ2)),可得知高斯分布的数乘还是高斯分布。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值