论文笔记_S2D.29_2017_CVPR_多尺度连续CRFs作为序列深度网络的单目深度估计

本文提出一种将多尺度连续CRFs整合到深度网络中,用于单目深度估计的方法。通过结合CNN的侧输出,利用连续CRF进行深度信息融合,形成序列深度网络,实现端到端训练,提高了深度图的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本情况

  • 题目:Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation
  • 引用:Xu, D., Ricci, E., Ouyang, W., Wang, X., & Sebe, N. (2017). Multi-scale continuous crfs as sequential deep networks for monocular depth estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5354-5362).
  • 开源代码:https://github.com/danxuhk/ContinuousCRF-CNN.git

摘要

本文从单个静止图像中解决了深度估计的问题。 受近期多尺度卷积神经网络(CNN)工作的启发,我们提出了一个深度模型,它融合了从多个CNN侧输出得到的补充信息。 与以前的方法不同,通过连续条件随机场(CRF)进行整合(使用连续CRFs集成前端CNN的多个侧输出映射)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惊鸿一博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值