BEVFormer模型技术解析与代码实现

一、模型设计原理

BEVFormer(Bird's Eye View Former)是面向自动驾驶场景设计的视觉感知模型,其核心创新在于构建了统一的多视角时空特征表征框架。模型通过Transformer架构将多摄像头视角的图像特征映射到鸟瞰图空间,解决了传统感知方案中视角差异带来的信息割裂问题。

关键技术特点:

  • 多模态融合:支持摄像头与LiDAR数据联合输入
  • 时序建模:支持最长4秒的历史帧信息整合
  • 统一特征空间:生成分辨率可调的BEV

二、核心模块详解

1. 特征提取层

# 基于mmdetection框架的主干网络配置示例  
backbone=dict(  
    type='ResNet',  
    depth=101,  
    num_stages=4,  
    out_indices=(1, 2, 3),  
    frozen_stages=1,  
    norm_cfg=dict(type='BN2d', requires_grad=False),  
    norm_eval=True,  
    style='pytorch',  
    dcn=dict(type='DCNv2', deform_groups=1),  
    stage_with_dcn=(False, True, True, True)  
)  

     以经典的resnet为例,输入为环视相机的6路(或自定义)图像,将N合并到Batch维度后,使用backbone进行特征提取,得到各路相机对应的高维feature map;

2. BEV query生成

class BEVQueryGenerator(nn.Module):  
    def __init__(self, bev_h=200, bev_w=200, dim=256):  
        super().__init__()  
        self.bev_embedding = nn.Embedding(bev_h * bev_w, dim)  
        self.height_embed = nn.Parameter(torch.randn(1, dim, 1))  
          
    def forward(self, batch_size):  
        # 生成BEV网格坐标  
        grid_y, grid_x = torch.meshgrid(  
            torch.arange(self.bev_h),  
            torch.arange(self.bev_w)  
        )  
        grid = torch.stack([grid_x, grid_y], -1).flatten(0,1)  
        # 初始化查询向量  
        queries = self.bev_embedding(grid.to(device))   
        # 加入高度编码  
        queries = queries + self.height_embed  
        return queries.unsqueeze(0).repeat(batch_size,1,1)  

        BEV Queries 的初始化,一般是采用torch 内置的nn.Embedding进行随机初始化,随后训练后会固定到满足数据分布bias的值,在部署推理阶段bev query的值是定值,随着model ckpt一起加载。

3. 时空Transformer编码器

        

        Bevformer的核心结构就是基于transformer架构的Tempral attention和Spatial Attention。 其中时序注意力机制主要利用当前帧的bev query与历史帧的bev feature(其实就是历史时刻的bev query)计算attention,而空间注意力机制是bev query和此前提取到的img feature map计算attention。通过交替多层进行实现高效的Transformer编码,得到最终具备丰富高维特征的bev query。

具体代码:

空间交叉注意力(Spatial Cross-Attention)
class SpatialCrossAttention(nn.Module):  
    def __init__(self, embed_dims, num_heads, dropout=0.0):  
        super().__init__()  
        self.deformable_attention = MSDeformableAttention3D(  
            embed_dims=embed_dims,  
            num_heads=num_heads,  
            num_levels=3,  # 多尺度特征层  
            num_points=8,  # 采样点数  
            batch_first=True  
        )  
      
    def forward(self, query, reference_points, feat_maps):  
        return self.deformable_attention(  
            query=query,  
            value=feat_maps,  
            spatial_shapes=[f.shape[-2:] for f in feat_maps],  
            reference_points=reference_points  
        )  

原理步骤:

  1. 根据传感器内外惨,建立BEV坐标到多视角图像的空间投影关系,并将bev上的点投影至img坐标系,获得一系列2D point;
  2. 利用Deformable attention机制,将步骤1得到的2D point作为reference points,从而计算attention,Deformable attention可以加速attention的计算速度。
  3. 计算得到查询后的bev query;
时间自注意力(Temporal Self-Attention)
class TemporalSelfAttention(nn.Module):  
    def __init__(self, channels, num_heads):  
        super().__init__()  
        self.attention = nn.MultiheadAttention(  
            embed_dim=channels,  
            num_heads=num_heads,  
            batch_first=True  
        )  
          
    def forward(self, current_bev, history_bevs):  
        # 时序对齐:补偿车辆自身运动  
        aligned_history = motion_compensation(history_bevs, ego_motion)  
        # 拼接时序特征 [B, T+1, H*W, C]  
        combined = torch.cat([current_bev.unsqueeze(1), aligned_history], dim=1)  
        # 执行注意力计算  
        return self.attention(combined, combined, combined)[0][:, 0]  

关键技术点:

  • 运动补偿:通过上一帧与当前帧的pose进行bev的运动补偿;
  • 时序特征融合:将当前帧的bev query与历史帧的query进行拼接,当做self-attention模块的query;
  • 记忆缓存:采用环形缓冲区存储历史BEV特征

4. 多任务输出头

3D目标检测头
class DetectionHead(nn.Module):  
    def __init__(self, in_channels, num_classes=10):  
        super().__init__()  
        self.reg_branch = nn.Sequential(  
            nn.Linear(in_channels, 256),  
            nn.ReLU(),  
            nn.Linear(256, 7)  # (x,y,z,w,h,l,θ)  
        )  
        self.cls_branch = nn.Sequential(  
            nn.Linear(in_channels, 256),  
            nn.ReLU(),  
            nn.Linear(256, num_classes)  
        )  
          
    def forward(self, bev_feature):  
        return {  
            'reg': self.reg_branch(bev_feature),  
            'cls': self.cls_branch(bev_feature)  
        }  
语义分割头
class SegmentationHead(nn.Module):  
    def __init__(self, in_channels, num_classes=3):  
        super().__init__()  
        self.conv = nn.Sequential(  
            nn.Conv2d(in_channels, 128, 3, padding=1),  
            nn.BatchNorm2d(128),  
            nn.ReLU(),  
            nn.Conv2d(128, num_classes, 1)  
        )  
          
    def forward(self, bev_feature):  
        return self.conv(bev_feature)  

        通过接不同任务的解码头可以实现不同任务的检测。

五、性能评估指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值