BEV开山之作Lift-Splat-Shot (LSS) 深度详解

在自动驾驶感知系统中,将多视角图像转换为鸟瞰图(BEV)是一个关键步骤。Lift-Splat-Shot(LSS)是一种高效的视角转换方法,能够将透视视图特征转换为BEV空间,从而实现更准确的3D物体检测。本文将详细解析LSS的工作原理、技术细节及其应用场景。

一、LSS概述

        LSS(Lift-Splat-Shot)是由Philipp Henzler等人于2021年提出的一种用于自动驾驶感知系统的视角转换方法。该方法通过三个主要步骤——Lift、Splat和Shot,将多视角图像特征映射到统一的鸟瞰图特征空间,从而支持更精确的3D目标检测。

1.1 LSS的核心思想

        LSS的主要目标是解决传统单目摄像头在3D感知中的局限性,如透视投影失真和多模态数据对齐困难。通过构建一个统一的BEV特征表示,LSS能够在保持几何一致性的同时,更好地捕捉场景中的复杂信息。

二、LSS的技术实现

        LSS的工作流程可以分为三个阶段:Lift、Splat和Shot。每个阶段都有其独特的功能和实现方式。

2.1 Lift

功能:预测每个像素的深度分布。

实现

  • 输入:多视角图像特征。
  • 输出:每个像素的深度分布概率。

        具体来说,Lift阶段使用一个深度估计网络来预测每个像素点的深度值。为了提高深度估计的准确性,通常采用分类方式离散化深度区间(例如,将深度范围划分为112个bins)。这样做的好处是可以利用分类任务的优势,避免回归任务中的精度损失。简易代码:

def lift(image_features):
    """
    Predict depth distribution for each pixel.
    
    Args:
        image_features (Tensor): Feature maps from the image encoder.
        
    Returns:
        depth_distributions (Tensor): Depth distributions for each pixel.
    """
    # Example implementation using a neural network
    depth_net = nn.Sequential(
        nn.Conv2d(in_channels=channels, out_channels=128, kernel_size=3, padding=1),
        nn.ReLU(),
        nn.Conv2d(in_channels=128, out_channels=num_depth_bins, kernel_size=1)
    )
    depth_logits = depth_net(image_features)
    depth_distributions = F.softmax(depth_logits, dim=1)
    return depth_distributions
2.2 Splat

功能:将backbone中提取到的环视相机特征,通过Lift计算到的深度以及相机内外惨投影到BEV网格。

实现

  • 输入:每个像素的深度分布和其对应的透视视图特征。
  • 输出:BEV网格上的特征表示。

Splat阶段通过体素池化(Voxel Pooling)将透视视图特征投影到BEV网格上。具体做法是根据每个像素的深度分布,将其特征值分配到相应的BEV网格单元中。为了处理重叠区域,通常采用加权平均(pooling)的方式进行特征聚合。

def splat(depth_distributions, image_features, cam_intrinsics, cam_extrinsics, bev_grid):
    """
    Project perspective view features to BEV grid.
    
    Args:
        depth_distributions (Tensor): Depth distributions for each pixel.
        image_features (Tensor): Feature maps from the image encoder.
        cam_intrinsics (Tensor): Camera intrinsics matrix.
        cam_extrinsics (Tensor): Camera extrinsics matrix.
        bev_grid (Tensor): BEV grid coordinates.
        
    Returns:
        bev_features (Tensor): Features in BEV space.
    """
    batch_size, num_depth_bins, height, width = depth_distributions.shape
    bev_features = torch.zeros((batch_size, channels, bev_height, bev_width))
    
    for b in range(batch_size):
        for h in range(height):
            for w in range(width):
                depth_probs = depth_distributions[b, :, h, w]
                xyz = project_to_3d(h, w, depth_probs, cam_intrinsics[b], cam_extrinsics[b])
                bev_coords = project_to_bev(xyz, bev_grid)
                
                for i, coord in enumerate(bev_coords):
                    if 0 <= coord[0] < bev_height and 0 <= coord[1] < bev_width:
                        bev_features[b, :, coord[0], coord[1]] += depth_probs[i] * image_features[b, :, h, w]
    
    return bev_features
2.3 Shot

功能:沿高度维度压缩形成2D BEV特征。

实现

  • 输入:BEV网格上的特征表示。
  • 输出:压缩后的2D BEV特征。

Shot阶段通过对BEV网格的高度维度进行压缩,得到最终的2D BEV特征。这一步骤有助于减少计算量,并使后续的3D检测任务更加高效。

def shot(bev_features):
    """
    Compress BEV features along the height dimension.
    
    Args:
        bev_features (Tensor): Features in BEV space.
        
    Returns:
        compressed_bev_features (Tensor): Compressed 2D BEV features.
    """
    # Example implementation using max pooling
    compressed_bev_features = torch.max(bev_features, dim=2)[0]
    return compressed_bev_features

三、LSS的关键技术

3.1 深度估计的隐式学习

        LSS通过隐式学习深度分布,而不是依赖显式的激光雷达监督。这种方法不仅降低了对昂贵传感器的依赖,还提高了模型的泛化能力。

3.2 特征融合与上下文建模

        在Splat阶段,LSS通过pooling的方式进行特征融合,确保了不同视角特征的有效结合。此外,LSS还可以引入上下文建模模块,进一步提升特征表示的质量。

3.3 数据增强策略

        为了提高模型的鲁棒性和泛化能力,LSS采用了多种数据增强策略,包括随机旋转、缩放、翻转等操作。这些策略有助于模型更好地应对复杂的现实场景。

四、LSS的应用场景

        LSS作为一种高效的视角转换方法,广泛应用于自动驾驶感知系统中。以下是几个典型的应用场景:

4.1 多视角3D目标检测

        LSS能够将多个视角的图像特征转换为统一的BEV特征,从而支持多视角3D目标检测任务。这种多视角融合的方式显著提升了检测的准确性和鲁棒性。

4.2 动态场景理解

        通过结合历史帧的BEV特征,LSS可以有效处理动态场景中的物体跟踪和预测问题。时序特征融合技术使得LSS在处理快速移动物体或多变场景时表现优异。

4.3 路径规划与避障决策

        BEV特征表示更符合路径规划算法的输入需求,因此LSS可以直接应用于自动驾驶车辆的路径规划和避障决策任务中。

五、总结与展望

        LSS作为一种创新的视角转换方法,在自动驾驶感知系统中展现了巨大的潜力。通过Lift、Splat和Shot三个阶段的有效结合,LSS实现了从透视视图到鸟瞰图的高效转换,支持更精确的3D目标检测和动态场景理解。

未来,LSS的研究方向可能包括:

  • 轻量化设计:探索更高效的视角转换算子,以减少计算复杂度,提升实时性。
  • 多模态融合:结合毫米波雷达等低成本传感器,进一步提升感知系统的鲁棒性和准确性。
  • 自监督学习:利用无标注数据提升模型的泛化能力,减少对大规模标注数据的依赖。
### BEV Transformer在自动驾驶决策规划中的应用 #### 应用背景 随着自动驾驶技术的发展,BEV(鸟瞰图视角)感知成为提升车辆理解周围环境能力的关键组成部分。通过将传感器获取的数据转换成统一的BEV表示形式,可以更有效地捕捉场景的空间关系并支持后续的任务执行。 #### 数据预处理与特征提取 对于来自摄像头和其他传感器(如激光雷达)采集到的信息,在进入BEV Transformer之前通常会先经过初步处理阶段。这一步骤涉及图像校正、噪声过滤以及多模态融合等操[^2]。接着利用卷积神经网络(CNNs),从原始输入中抽取高层次语义特征为下一步工的基础材料。 #### 转换至BEV空间 为了适应不同类型的传感器数据,并确保所有观测都能在一个共同坐标系下表达出来,系统需要构建一个三维世界模型并将二维平面视图映射至此框架之中。此过程不仅限于简单的几何变换;还需要考虑遮挡情况下的补全策略等问题。最终得到的是一个富含位置信息的地图切片集合——即所谓的“栅格化”表示法。 #### 自注意力机制的用 一旦获得了高质量的BEV表征之后,则可借助Transformer特有的自注意力建构来增强对复杂交通状况的认知水平。具体而言,该模块允许每个查询点在整个视野范围内寻找关联度最高的其他部分,从而形成全局一致性的描述方式。这种特性特别适用于解决诸如行人突然横穿马路之类的突发性事件识别挑战[^3]。 #### 集成高精地图信息 除了依靠实时感测所得来的即时反馈之外,预先存储好的详尽地理资料同样不可或缺。当两者相结合时能够显著提高定位精度的同时也为长远距离上的轨迹推测提供了可靠的依据。例如,在交叉路口附近行驶期间,即使某些区域暂时不可见也可以凭借记忆库内的记录做出合理假设。 #### 实现路径规划功能 最后也是最重要的一环便是运用上述成果指导实际驾驶行为的选择。此时往往还会引入额外的时间维度考量因素,使得整个方案具备更强鲁棒性和灵活性。一方面要考虑到当前时刻所处的具体情形;另一方面也要对未来可能发生的各种变化有所预见。因此,基于Transformer架构设计而成的行为预测子系统便应运而生了。它可以通过分析过往一段时间序列里的模式规律进而推断出最有可能发生的结果,为制定最优行动路线提供科学支撑。 ```python import torch from transformers import AutoModelForObjectDetection, DetrFeatureExtractor def bev_transformer_planning(image_data, lidar_points): feature_extractor = DetrFeatureExtractor() # Preprocess input data to bird's-eye view representation bev_representation = preprocess_to_bev(image_data, lidar_points) model = AutoModelForObjectDetection.from_pretrained('facebook/detr-resnet-50') inputs = feature_extractor(bev_representation, return_tensors="pt") outputs = model(**inputs) predictions = post_process_predictions(outputs.logits, outputs.pred_boxes) planned_path = generate_optimal_trajectory(predictions) return planned_path def preprocess_to_bev(images, points_cloud): """Convert raw sensor readings into a unified top-down perspective.""" pass def post_process_predictions(logits, boxes): """Interpret the output from transformer as actionable insights""" pass def generate_optimal_trajectory(detections): """Based on detected objects and their movements predict safest path forward""" pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值