【NLP】图神经网络解释以及如何使用 PyTorch 使用

  🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

图神经网络 (GNN) 通过实现结构化数据的有效建模和分析,正在彻底改变机器学习领域。GNN 最初是为基于图的数据而设计的,现已在各个领域得到应用,包括自然语言处理 (NLP)。通过整合文本数据中固有的结构依赖性,GNN 提供了一种有前途的方法来处理复杂的 NLP 任务,例如文本分类。

文章目录

什么是图神经网络(GNN)?

什么是图神经网络(GNN)架构?

图神经网络(GNN)有哪些类型?

图神经网络(GNN)的应用

图神经网络 (GNN) 和 NLP

PyTorch 的图神经网络教程

用于文本分类的图卷积网络

结论


 文本分类涉及根据文本文档的内容对文本文档进行分类或分配预定义标签。传统方法通常依赖于词袋或n 元语法表示,这可能无法捕获单词之间丰富的语义关系。GNN 通过将文本数据视为图来解决此限制,其中单词表示为节点,并且它们的关系通过边或邻接矩阵进行建模。

近年来,图卷积网络(GCN)已成为文本分类的流行 GNN 架构。GCN 可以从相邻单词进行信息聚合,捕获文本中的上下文依赖关系和语义关系。通过将图卷积应用于词嵌入并利用词之间的连接模式,GCN 可以为文本文档生成更具表现力的表示,从而提高分类准确性。

使用流行的深度学习库PyTorch,实现GCN进行文本分类变得更容易。PyTorch 提供了一个灵活的框架来定义和训练 GNN 模型,使研究人员和从业者能够在 NLP 任务中利用 GCN 的强大功能。结合 GNN 和 PyTorch 的优势,可以创建复杂的模型,有效捕获文本数据的结构特征,从而实现更准确、更稳健的文本分类。

在本文中,我们将深入研究图卷积网络(GCN)在文本分类任务中的应用。我们将探索使用 PyTorch 的架构、数据准备、模型实现,以及利用 GCN 进行文本分类的潜在好处。通过利用 GNN 的力量,我们可以开辟理解和分析文本数据的新途径,从而推动各种 NLP 应用的进步。

什么是图神经网络(GNN)?

图神经网络(GNN)是一种旨在处理和分析以图表示的结构化数据的神经网络。与处理网格状或顺序数据的传统神经网络不同,GNN 可以有效地捕获图中元素之间的关系和依赖关系。

图神经网络 (GNN) 是一种旨在处理和分析以图表示的结构化数据的神经网络

图神经网络旨在处理和分析以图表示的结构化数据。

图由通过边(也称为链接)连接的节点(也称为顶点)组成。图中的每个节点都可以具有与其关联的属性或特征,边表示节点之间的关系或连接。例如,在社交网络中,节点可以代表个人,边可以代表他们之间的友谊。

GNN 背后的主要思想是通过基于相邻节点的特征迭代更新节点表示来通过图结构传播信息。这个过程允许 GNN 学习有意义的、上下文感知的节点表示,以捕获局部和全局图结构。

通常,GNN 由多个层组成,每个层执行两个主要操作:消息传递和聚合。在消息传递步骤中,每个节点聚合来自其邻居的信息并更新其表示。聚合步骤组合相邻节点的更新表示以获得每个节点的细化表示。这些操作在多个层上迭代执行,使 GNN 能够捕获日益复杂的图形模式。

GNN 已成功应用于各种任务,包括节点分类、链接预测、图分类、推荐系统和分子属性预测。他们在数据可以自然地表示为图的领域(例如社交网络、知识图、生物网络和引文网络)显示了有希望的结果。

什么是图神经网络(GNN)架构?

图神经网络 (GNN) 架构可能会根据具体任务和模型所需的属性而有所不同。在这里,我们将描述一种常用的 GNN 架构,即图卷积网络(GCN),它构成了许多其他 GNN 变体的基础。

请注意,除了 GCN 之外,GNN 架构也有了一些进步和变化,但我们将重点描述 GCN 架构作为起点。

图卷积网络 (GCN) 架构在具有 N 个节点和邻接矩阵 A 的图上运行。以下是 GCN 架构的分步概述:

1. 输入表示: 图中的每个节点都与一个特征向量相关联。这些初始节点特征可以从节点的属性或其他来源获得。我们将图的特征矩阵表示为 X,其中 X ∈ R^(N x D),其中 N 是节点数,D 是节点特征的维度。

2. 卷积层: 卷积层是GCN的核心组件。每个节点聚合来自其相邻节点的信息并更新其在该层中的表示。更新是通过应用受传统卷积神经网络(CNN)中的卷积运算启发的图卷积运算来执行的。

  • 在GCN中,图卷积运算可以定义如下:

    H = σ(A X W)

    W是可学习的权重矩阵,A X表示矩阵乘法,σ是ReLU等激活函数。

    矩阵乘法A X 表示相邻节点特征的聚合。A X 相当于将邻接矩阵 A 与特征矩阵 X 相乘,得到大小为 (N x D) 的矩阵,其中每一行对应于节点邻居的聚合特征。将该聚合特征矩阵与权重矩阵 W 相乘并应用激活函数,生成矩阵 H 中更新的节点表示。

3.非线性激活: 非线性激活函数将非线性引入到卷积层之后的节点表示中。常见的激活函数包括 ReLU、sigmoid 或 tanh。

4. 池化或聚合: 您可能希望根据任务将节点表示聚合为图形级表示。这可以通过应用池化或聚合操作来完成,例如求和、均值池化或图级注意机制。

5. 输出层: 图级表示可以输入到完全连接的层或其他类型的分类器中,以根据任务产生所需的输出。例如,在节点分类任务中,输出层可能由用于预测每个节点的类标签的 softmax 函数组成。

可以对多个层重复上述步骤,以捕获日益复杂的图形模式。每层的输出都可以作为后续层的输入,从而允许信息通过图结构传播。

除了 GCN 之外,还提出了各种其他 GNN 架构,包括 GraphSAGE、GAT(图注意力网络)、图同构网络(GIN)、GraphSAGE、图小波神经网络(GWNN)等等。这些架构可能会引入额外的组件,例如注意力机制、跳跃连接或高阶操作,以增强模型的表达能力或解决图学习任务中的特定挑战。

值得注意的是,GNN 架构的具体细节可能会根据您引用的研究论文或实现而有所不同。架构选择通常取决于特定任务、图形数据特征以及模型所需的属性。

图神经网络(GNN)有哪些类型?

图神经网络 (GNN) 有多种类型,每种类型都有不同的架构变化和特征。以下是一些常用的 GNN 类型:

  1. 图卷积网络(GCN):如前所述,GCN 是基础 GNN 架构之一。它们聚合来自相邻节点的信息并通过图卷积运算更新节点表示。
  2. 图注意力网络(GAT):GAT 利用注意力机制在聚合过程中为相邻节点分配不同的权重。这使得模型能够专注于信息更丰富的节点并执行自适应邻域聚合。
  3. GraphSAGE:  GraphSAGE(图采样和聚合)是 GNN 的一种变体,它从每个节点的局部邻域采样并聚合特征。它包含一个“邻域采样”步骤,其中对每个节点采样固定大小的邻域,然后进行特征聚合和更新节点表示。
  4. 图同构网络(GIN):GIN 被设计为排列不变,并且可以在有向图和无向图上运行。他们使用多个聚合步骤并应用共享的多层感知器(MLP)来聚合来自节点邻域的特征。
  5. 具有循环单元 (GRU) 的图神经网络:GRU 通过合并循环单元来对顺序图数据中的时间依赖性进行建模,从而扩展了 GNN 架构。它们通常用于涉及动态图或时间序列图数据的任务。
  6. 图小波神经网络 (GWNN):GWNN 利用图小波变换对图执行局部谱分析。他们使用小波滤波器捕获局部和全局图结构,从而实现有效的信息传播和特征提取。
  7. 图自动编码器: 图自动编码器是无监督学习模型,它学习将图数据编码为低维嵌入并将其解码回来以重建原始图。它们对于图形生成、异常检测和表示学习很有用。
  8. 图生成模型:这些模型专注于生成与给定的训练图集具有相似属性的新图。图生成模型的示例包括图变分自动编码器(Graph-VAE)、图生成对抗网络(Graph-GAN)和用于图生成的图神经网络(GraphRNN)。

这些只是 GNN 架构的几个例子,图神经网络领域正在迅速发展。研究人员继续开发 GNN 的新变体和改编,以解决不同的任务、提高性能并处理各种图形数据类型。

值得注意的是,一些 GNN 架构可以组合或扩展以创建混合模型或解决图学习任务中的特定挑战。

图神经网络(GNN)的应用

图神经网络(GNN)由于其建模和分析结构化数据的能力而在各个领域得到了应用。以下是 GNN 的一些值得注意的应用:

  1. 社交网络分析:  GNN 已广泛应用于社交网络分析任务。他们可以捕捉社会关系和社区结构并影响网络内的传播。GNN 支持社交网络中的节点分类、链接预测、社区检测和推荐系统等任务。
  2. 知识图:事实 证明,GNN 在知识图建模和推理方面非常有效,可以表示有关实体及其关系的结构化信息。GNN 可以学习实体和关系嵌入,在知识图中执行链接预测、实体分类和问答,从而改进信息检索和知识库补全等任务。
  3. 推荐系统:  GNN 通过整合用户-项目交互和对底层图结构进行建模,在推荐系统中展现出了前景。他们可以捕获用户偏好和项目关系,并根据学习到的嵌入生成个性化推荐。GNN 已被用于电影推荐、电子商务和社交媒体平台。
  4. 计算机视觉:  GNN 已成功应用于计算机视觉任务,特别是在图结构数据场景中。它们可以对对象关系和场景图进行建模,并执行图像分割、对象检测和动作识别任务。计算机视觉中的 GNN 提供上下文感知表示并捕获对象之间的依赖关系。
  5. 药物发现:  GNN 在药物发现和材料科学领域受到了关注。他们可以模拟分子结构和化学相互作用,以预测分子特性、筛选候选药物并协助药物设计。GNN 可以分析分子图,捕获原子级依赖性和结构模式,以实现更准确的预测。
  6. 自然语言处理(NLP):GNN 越来越多地应用于 NLP 任务。他们可以将单词、句子或文档之间的关系建模为图形并捕获语义依赖性。GNN 已用于情感分析、命名实体识别、关系提取、文本分类和文档摘要。
  7. 生物信息学:  GNN 已在生物信息学中应用于蛋白质-蛋白质相互作用预测、蛋白质结构预测和基因组学分析等任务。GNN 可以对生物网络进行建模并捕获生物分子之间的依赖关系,从而有助于更好地理解和分析复杂的生物系统。

图神经网络 (GNN) 和 NLP

图神经网络 (GNN) 可应用于各种自然语言处理 (NLP) 任务,从而能够对单词、句子或文档之间的结构化关系进行建模和分析。以下是 GNN 在 NLP 中的一些使用方式:

  1. 语义角色标签(SRL):GNN 可用于执行 SRL,其中涉及识别句子中的谓词-论元结构。GNN 可以捕获单词及其对应角色之间的依赖关系和关系,以确定句子的语义结构。
  2. 关系提取:  GNN 可应用于关系提取任务,其目标是识别和分类文本中实体之间的关系。GNN 可以通过将单词及其关系表示为图形来有效地建模实体之间的依赖关系和交互,从而实现更准确的关系提取。
  3. 情感分析:  GNN 可以通过捕获单词之间的依赖关系和上下文关系对文本数据进行情感分析。通过将句子表示为图并通过图结构传播信息,GNN 可以学习对情感信息进行编码并预测文本中表达的情感的表示。
  4. 文本分类:  GNN 可用于文本分类任务,其目标是将预定义的类别或标签分配给文本文档。通过将文档视为图中的节点并对它们的关系进行建模,GNN 可以捕获文档集合中的结构信息和依赖关系,从而提高文本分类性能。
  5. 文本生成:  GNN 可用于文本生成任务,例如生成连贯且上下文相关的句子或文档。GNN 可以捕获单词和短语之间的依赖关系和关系,从而生成更明智和上下文感知的文本。
  6. 问答:  GNN 可用于问答任务,其目标是根据给定问题和上下文段落生成答案。通过将问题、上下文和候选答案建模为图并通过图结构传播信息,GNN 可以捕获相关关系和依赖关系,从而实现更准确和上下文感知的问答。
  7. 文档摘要:  GNN 可应用于文档摘要任务,其目标是生成长文档的简明摘要。通过将文档表示为图并利用图结构,GNN 可以捕获句子或段落之间的重要关系,帮助提取重要信息进行摘要。

这些只是 GNN 如何应用于 NLP 任务的几个例子。GNN 提供了一种很有前途的方法来利用基于图的表示并捕获文本数据中的结构依赖性,从而提高各种 NLP 任务的性能。

PyTorch 的图神经网络教程

用于文本分类的图卷积网络

图卷积网络(GCN)可以通过将文本数据表示为图并执行​​图卷积来捕获单词之间的关系来适应文本分类任务。以下是如何应用 GCN 进行文本分类的概述:

1、数据准备:

  • 通过将文档标记为单词或子词来预处理文本数据。
  • 通过将每个唯一单词映射到数字索引来构建词汇表。
  • 将文本文档转换为单词索引序列。
  • 创建一个邻接矩阵,根据单词的共现或其他关系来表示文档中单词之间的连接。

2.定义GCN模型类:

import torch
import torch.nn as nn
import torch.nn.functional as F

class GCN(nn.Module):
    def __init__(self, vocab_size, embed_dim, hidden_dim, output_dim):
        super(GCN, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim)
        self.conv1 = nn.Conv1d(embed_dim, hidden_dim, kernel_size=3, padding=1)
        self.conv2 = nn.Conv1d(hidden_dim, output_dim, kernel_size=3, padding=1)

    def forward(self, x, adjacency_matrix):
        x = self.embedding(x)
        x = x.permute(0, 2, 1)
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = x.permute(0, 2, 1)
        x = torch.matmul(adjacency_matrix, x)
        x = x.mean(dim=1)
        return x

GCN 模型包含一个嵌入层 ( embedding ),用于将词索引转换为密集词嵌入。卷积层(conv1 和 conv2)执行图卷积,然后执行激活函数。邻接矩阵乘以节点特征 ( x ),以通过图结构传播信息。最后,沿着序列维度应用均值池操作以获得每个文档的固定长度表示。

3. 准备输入数据:

x = torch.tensor(document_sequences, dtype=torch.long)  # Tensor of document sequences
adjacency_matrix = torch.tensor(adjacency_matrix, dtype=torch.float32)  # Adjacency matrix
target_labels = torch.tensor(labels, dtype=torch.long)  # Tensor of target labels

4. 创建GCN模型的实例:

vocab_size = # Size of the vocabulary
embed_dim = # Dimensionality of word embeddings
hidden_dim = # Dimensionality of hidden layer
output_dim = # Dimensionality of output layer
model = GCN(vocab_size, embed_dim, hidden_dim, output_dim)

5.定义损失函数和优化器:

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

6. 训练循环:

for epoch in range(num_epochs):
    optimizer.zero_grad()
    output = model(x, adjacency_matrix)
    loss = criterion(output, target_labels)
    loss.backward()
    optimizer.step()

7. 评价:

with torch.no_grad():
    model.eval()
    output = model(x, adjacency_matrix)
    predicted_labels = torch.argmax(output, dim=1)
    # Perform evaluation metrics or further processing

应用图卷积网络(GCN)进行文本分类的基本概述。您可以自定义模型架构,尝试不同的超参数,或合并其他层以满足您的特定任务和要求。

结论

图神经网络 (GNN) 已成为建模和分析结构化数据(包括图和文本数据)的强大框架。它们允许捕获数据中元素之间的关系和依赖关系,从而实现更有效的表示学习和预测建模。

图卷积网络(GCN)可以通过将文本数据表示为图并执行​​图卷积来捕获单词之间的关系来适应文本分类任务。通过将单词视为节点并利用邻接矩阵,GCN 可以通过图结构传播信息并学习文本文档的表达表示。这种方法可以通过捕获单词之间的上下文和语义关系来提高文本分类模型的性能。

使用 PyTorch 实现用于文本分类的 GCN 涉及定义具有嵌入层和卷积层的模型类、使用单词序列和邻接矩阵准备输入数据,以及使用适当的损失函数和优化技术训练模型。PyTorch 为构建和训练 GNN 模型提供了灵活高效的框架。

值得注意的是,GNN 领域正在快速发展,除了 GCN 之外,还有各种其他 GNN 架构和技术可以探索用于文本分类和其他 NLP 任务。研究人员不断开发 GNN 的新变体和进步,扩展其应用并提高其性能。

通过利用 GNN 的力量,研究人员和从业者可以通过有效地建模文本数据中存在的复杂关系和依赖关系来增强他们的文本分类模型并实现最先进的性能。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PyTorch是一种深度学习框架,它提供了丰富的工具和函数,使得构建和训练神经网络变得更加简单和高效。它被广泛应用于计算机视觉、自然语言处理等领域。 深度学习是一种机器学习方法,其目标是通过模拟人脑神经网络的工作原理来实现各种人工智能任务。深度学习模型通常由许多层神经元组成,每一层都通过学习将输入转换为输出,最终实现复杂的模式识别和预测。 神经网络是一种扩展了传统神经网络的模型,用于处理数据。数据是由节点和边组成的数据结构,常用于表示社交网络、推荐系统等领域的关系。传统的神经网络无法直接处理数据,而神经网络通过引入卷积等操作,使神经网络能够有效地处理数据,从而提高了对结构的建模能力。 深度学习和神经网络在很多领域都取得了显著的进展。例如,在计算机视觉中,深度学习模型可以通过大量的像数据进行训练,实现物体识别、像生成等任务。而神经网络则可以用于分析社交网络中的用户关系、预测交通网络中的交通流量等。它们的电子版提供了对应的理论和实践指导,帮助学者和工程师更好地理解和应用这些技术。 总而言之,PyTorch深度学习和神经网络的电子版提供了学习和实践深度学习和神经网络的材料,对于研究者和开发者来说是非常有价值的资源。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonhhxg_柒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值