YOLOv10网络架构及特点

YOLOv10简介   

YOLOv10是清华大学的研究人员在Ultralytics Python包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 在显著降低计算开销的同时实现了最先进的性能。大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度-延迟权衡。

7622f5892f344263add11abcdff2500f.webp

 

概述

    实时目标检测旨在以较低的延迟准确预测图像中的物体类别和位置。YOLO 系列在性能和效率之间取得了平衡,因此一直处于这项研究的前沿。然而,对 NMS 的依赖和架构上的低效阻碍了最佳性能的实现。YOLOv10 通过为无 NMS 训练引入一致的双重分配和以效率-准确性为导向的整体模型设计策略,解决了这些问题。

网络架构

    YOLOv10 的结构建立在以前YOLO 模型的基础上,同时引入了几项关键创新。模型架构由以下部分组成:

    • 主干网:YOLOv10 中的主干网负责特征提取,它使用了增强版的 CSPNet(跨阶段部分网络),以改善梯度流并减少计算冗余。

    • 颈部:颈部设计用于汇聚不同尺度的特征,并将其传递到头部。它包括 PAN(路径聚合网络)层,可实现有效的多尺度特征融合。

    • 一对多头:在训练过程中为每个对象生成多个预测,以提供丰富的监督信号并提高学习准确性。

    • 一对一头:在推理过程中为每个对象生成一个最佳预测,无需 NMS,从而减少延迟并提高效率。

主要功能

    • 无 NMS 训练:利用一致的双重分配来消除对 NMS 的需求,从而减少推理延迟。

    • 整体模型设计:从效率和准确性的角度全面优化各种组件,包括轻量级分类头、空间通道去耦向下采样和等级引导块设计。

    • 增强的模型功能:纳入大核卷积和部分自注意模块,在不增加大量计算成本的情况下提高性能。

模型支持:

YOLOv10 有多种模型,可满足不同的应用需求:

    • YOLOv10-N:用于资源极其有限环境的纳米版本。

    • YOLOv10-S:兼顾速度和精度的小型版本。

    • YOLOv10-M:通用中型版本。

    • YOLOv10-B:平衡型,宽度增加,精度更高。

    • YOLOv10-L:大型版本,精度更高,但计算资源增加。

    • YOLOv10-X:超大型版本可实现最高精度和性能。

      性能

          在准确性和效率方面,YOLOv10 优于YOLO 以前的版本和其他最先进的模型。例如,在 COCO 数据集上,YOLOv10-S 的速度是RT-DETR-R18 的 1.8 倍,而 YOLOv10-B 与 YOLOv9-C 相比,在性能相同的情况下,延迟减少了 46%,参数减少了 25%。下图是使用TensorRT FP16 在T4 GPU上的测试结果:

    •  

      a40c307d3ddd484d883e689528db7790.webp

      实验和结果

          YOLOv10 在 COCO 等标准基准上进行了广泛测试,显示出卓越的性能和效率。与以前的版本和其他当代探测器相比,YOLOv10 在延迟和准确性方面都有显著提高。

    • 3ae76ef9e3004b71b2d21f93e1f870fa.webp

       

### YOLOv8 头部网络架构 YOLOv8 继承了先前版本的优点,在头部设计上进行了优化。具体来说,YOLOv8采用了无锚点(anchor-free)检测头的设计理念[^2]。 #### 1. 锚点机制的变化 不同于YOLOv4采用基于锚点的目标检测方法[^3],YOLOv8摒弃了传统的锚盒设定,转而使用中心点偏移的方式来进行目标定位。这种方式减少了预定义锚框带来的复杂度,并提高了模型对于不同尺度物体的适应能力。 #### 2. 特征融合策略 为了更好地捕捉多尺度特征,YOLOv8引入了改进版路径聚合网络(PAN)。该网络通过自底向上和自顶向下的双向特征传播机制,增强了浅层与深层特征之间的交互作用,从而提升了小目标检测性能以及整体精度。 #### 3. 预测模块 在预测阶段,YOLOv8不再依赖于固定的先验框尺寸,而是直接回归对象边界框的位置及其置信度得分。这种做法不仅简化了训练过程,也使得模型能够更加灵活地应对各种场景下的目标检测任务。 ```python class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def __init__(self, nc=80, anchors=(), ch=()): super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor (box+conf+cls) ... ``` 上述代码展示了YOLOv8中`Detect`类的部分初始化逻辑,其中`nc`表示类别数,`no`则代表每个位置输出维度大小(包括四个坐标分量、一个置信度分数加上分类概率)。此部分负责构建最终用于推理的对象检测器实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

偶尔摸点鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值