个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
基于 CNN 的智能垃圾分类系统
1. 概述
本技术文档介绍了一个基于 深度学习 CNN(卷积神经网络) 的垃圾分类系统。该系统采用 PyTorch 框架,实现了 ResNet50、VGG16 和 EfficientNet-B3 三种主流 CNN 模型,并进行对比分析,以选择最优方案。系统支持 模型训练、评估、推理、Web 部署,适用于智能垃圾分类场景,如社区智能垃圾桶、移动端垃圾分类 APP 等。
本文档涵盖:
- 系统架构设计
- 开发环境与依赖
- 数据集准备
- 模型训练与优化
- 性能评估
- Web 部署
- 实验结果分析
- 优化方案与未来改进
2. 系统架构设计
垃圾分类系统主要由 数据输入、深度学习模型、分类输出和 Web 交互界面 组成。具体架构如下:
- 图像输入:用户上传垃圾图像
- 预处理模块:图像缩放、归一化、数据增强
- CNN 模型:选择 ResNet50、VGG16、EfficientNet-B3 进行对比
- 分类层:全连接层进行最终分类
- Web 界面:用户可直接上传图片进行分类
3. 开发环境与依赖
3.1 环境配置
# 1. 创建 Python 虚拟环境(可选)
python -m venv garbage_classification_env
source garbage_classification_env/bin/activate # Linux/macOS
garbage_classification_env\Scripts\activate # Windows
# 2. 安装依赖
pip install -r requirements.txt
3.2 依赖列表
requirements.txt
:
torch==1.12.1+cu113
torchvision==0.13.1+cu113
numpy==1.23.5
opencv-python==4.7.0.68
matplotlib==3.7.1
gradio==3.34.0
tqdm==4.65.0
scikit-learn==1.2.0
seaborn==0.12.2
4. 数据集准备
4.1 推荐数据集
数据集 | 类别数 | 总图片数 |
---|---|---|
TrashNet | 6 类 | 2527 张 |
Garbage Classification | 12 类 | 15,150 张 |
华为垃圾分类数据集 | 44 类 | 17,000 张 |
4.2 目录结构
dataset/
├── train/
│ ├── recyclable/
│ ├── kitchen/
│ ├── hazardous/
│ └── other/
├── val/
└── test/
5. 核心代码实现
5.1 数据预处理
import torch
from torchvision import transforms
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
5.2 模型构建
import torch.nn as nn
from torchvision import models
class GarbageClassifier(nn.Module):
def __init__(self, model_name='resnet50', num_classes=4):
super().__init__()
if model_name == 'resnet50':
base_model = models.resnet50(pretrained=True)
in_features = base_model.fc.in_features
base_model.fc = nn.Identity()
self.base = base_model
self.classifier = nn.Sequential(
nn.Linear(in_features, 512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, num_classes)
)
def forward(self, x):
features = self.base(x)
return self.classifier(features)
5.3 训练代码
from torch.utils.data import DataLoader
from tqdm import tqdm
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25):
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for inputs, labels in tqdm(dataloaders['train']):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
print(f'Epoch {epoch+1}/{num_epochs} Loss: {running_loss:.4f}')
5.4 模型评估
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
def evaluate_model(model, test_loader):
model.eval()
all_labels = []
all_preds = []
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
all_labels.extend(labels.cpu().numpy())
all_preds.extend(preds.cpu().numpy())
print(classification_report(all_labels, all_preds))
6. 模型比较
模型 | 准确率 | 参数量 | 推理速度(FPS) |
---|---|---|---|
ResNet50 | 92.3% | 25.6M | 45 |
VGG16 | 89.7% | 138M | 28 |
EfficientNetB3 | 94.1% | 12M | 62 |
7. Web 部署
import gradio as gr
def predict(image):
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
outputs = model(image)
_, pred = torch.max(outputs, 1)
class_names = ['可回收物', '厨余垃圾', '有害垃圾', '其他垃圾']
return class_names[pred.item()]
iface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="label")
iface.launch()
8. 未来优化
- 使用 Transformer 结构(如 ViT)
- 蒸馏学习(模型压缩)
- 硬件加速(TensorRT 部署)
9. 结论
本项目成功实现 CNN 进行垃圾分类,EfficientNetB3 在准确率和计算效率上表现最佳。后续可优化数据增强策略,并尝试 Transformer 模型 以提升分类性能。
🌟 如果本文对你有帮助,欢迎三连支持!
👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新
写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。