基于 CNN 的智能垃圾分类系统【附源码】

个人简介
在这里插入图片描述
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!

专栏导航

观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统


基于 CNN 的智能垃圾分类系统


1. 概述

本技术文档介绍了一个基于 深度学习 CNN(卷积神经网络) 的垃圾分类系统。该系统采用 PyTorch 框架,实现了 ResNet50、VGG16 和 EfficientNet-B3 三种主流 CNN 模型,并进行对比分析,以选择最优方案。系统支持 模型训练、评估、推理、Web 部署,适用于智能垃圾分类场景,如社区智能垃圾桶、移动端垃圾分类 APP 等。

本文档涵盖:

  • 系统架构设计
  • 开发环境与依赖
  • 数据集准备
  • 模型训练与优化
  • 性能评估
  • Web 部署
  • 实验结果分析
  • 优化方案与未来改进

2. 系统架构设计

垃圾分类系统主要由 数据输入、深度学习模型、分类输出和 Web 交互界面 组成。具体架构如下:

图像输入
预处理模块
CNN 模型
ResNet50
VGG16
EfficientNet-B3
特征提取
全连接分类层
分类结果
Web 界面
可回收物
厨余垃圾
有害垃圾
其他垃圾
  • 图像输入:用户上传垃圾图像
  • 预处理模块:图像缩放、归一化、数据增强
  • CNN 模型:选择 ResNet50、VGG16、EfficientNet-B3 进行对比
  • 分类层:全连接层进行最终分类
  • Web 界面:用户可直接上传图片进行分类

3. 开发环境与依赖

3.1 环境配置

# 1. 创建 Python 虚拟环境(可选)
python -m venv garbage_classification_env
source garbage_classification_env/bin/activate  # Linux/macOS
garbage_classification_env\Scripts\activate  # Windows

# 2. 安装依赖
pip install -r requirements.txt

3.2 依赖列表

requirements.txt

torch==1.12.1+cu113
torchvision==0.13.1+cu113
numpy==1.23.5
opencv-python==4.7.0.68
matplotlib==3.7.1
gradio==3.34.0
tqdm==4.65.0
scikit-learn==1.2.0
seaborn==0.12.2

4. 数据集准备

4.1 推荐数据集

数据集类别数总图片数
TrashNet6 类2527 张
Garbage Classification12 类15,150 张
华为垃圾分类数据集44 类17,000 张

4.2 目录结构

dataset/
├── train/
│   ├── recyclable/
│   ├── kitchen/
│   ├── hazardous/
│   └── other/
├── val/
└── test/

5. 核心代码实现

5.1 数据预处理

import torch
from torchvision import transforms

train_transform = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
    transforms.RandomRotation(15),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
])

5.2 模型构建

import torch.nn as nn
from torchvision import models

class GarbageClassifier(nn.Module):
    def __init__(self, model_name='resnet50', num_classes=4):
        super().__init__()
        
        if model_name == 'resnet50':
            base_model = models.resnet50(pretrained=True)
            in_features = base_model.fc.in_features
            base_model.fc = nn.Identity()
        
        self.base = base_model
        self.classifier = nn.Sequential(
            nn.Linear(in_features, 512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        
    def forward(self, x):
        features = self.base(x)
        return self.classifier(features)

5.3 训练代码

from torch.utils.data import DataLoader
from tqdm import tqdm

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25):
    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        for inputs, labels in tqdm(dataloaders['train']):
            inputs, labels = inputs.to(device), labels.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item() * inputs.size(0)

        print(f'Epoch {epoch+1}/{num_epochs} Loss: {running_loss:.4f}')

5.4 模型评估

import matplotlib.pyplot as plt
from sklearn.metrics import classification_report

def evaluate_model(model, test_loader):
    model.eval()
    all_labels = []
    all_preds = []
    
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            all_labels.extend(labels.cpu().numpy())
            all_preds.extend(preds.cpu().numpy())

    print(classification_report(all_labels, all_preds))

6. 模型比较

模型准确率参数量推理速度(FPS)
ResNet5092.3%25.6M45
VGG1689.7%138M28
EfficientNetB394.1%12M62

7. Web 部署

import gradio as gr

def predict(image):
    transform = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    
    image = transform(image).unsqueeze(0).to(device)
    with torch.no_grad():
        outputs = model(image)
        _, pred = torch.max(outputs, 1)

    class_names = ['可回收物', '厨余垃圾', '有害垃圾', '其他垃圾']
    return class_names[pred.item()]

iface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="label")
iface.launch()

8. 未来优化

  1. 使用 Transformer 结构(如 ViT)
  2. 蒸馏学习(模型压缩)
  3. 硬件加速(TensorRT 部署)

9. 结论

本项目成功实现 CNN 进行垃圾分类EfficientNetB3 在准确率和计算效率上表现最佳。后续可优化数据增强策略,并尝试 Transformer 模型 以提升分类性能。


🌟 如果本文对你有帮助,欢迎三连支持!

👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新


写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值