⚙️ 国产大模型部署硬件选型实战指南:单机 / 多卡 / 云端 × GPU组合建议
🎯 本文目标:结合国产主流模型(如 Qwen / DeepSeek / Baichuan)实测数据,从算力需求、显存占用、吞吐表现出发,推荐适合不同规模和阶段的部署硬件方案。
✅ 一、为什么大模型部署一定要考虑硬件形态?
大模型“能不能用起来”,99%取决于你有多大的“推理场地”。不同模型大小 + 不同推理方式(fp16 / int4 / 并发)会对显卡/显存/带宽等产生巨大压力。
📌 举个例子:
- Qwen-7B FP16 模式需要 13GB 显存,加载到 RTX 3060 都困难
- DeepSeek-MoE 虽然逻辑参数 236B,但实际只激活一部分专家路由,占用仅 16G
- 如果你要部署三个模型切换服务,显存就得叠加,还得考虑热切换调度能力
✅ 所以选对硬件形态 = 少踩显存坑 × 提高部署上线速度
✅ 二、国产主流模型推理需求速查表
以下为我们实测常见国产