国产大模型部署硬件选型实战指南:单机 / 多卡 / 云端 × GPU组合建议

⚙️ 国产大模型部署硬件选型实战指南:单机 / 多卡 / 云端 × GPU组合建议

🎯 本文目标:结合国产主流模型(如 Qwen / DeepSeek / Baichuan)实测数据,从算力需求、显存占用、吞吐表现出发,推荐适合不同规模和阶段的部署硬件方案。


✅ 一、为什么大模型部署一定要考虑硬件形态?

大模型“能不能用起来”,99%取决于你有多大的“推理场地”。不同模型大小 + 不同推理方式(fp16 / int4 / 并发)会对显卡/显存/带宽等产生巨大压力。

📌 举个例子:

  • Qwen-7B FP16 模式需要 13GB 显存,加载到 RTX 3060 都困难
  • DeepSeek-MoE 虽然逻辑参数 236B,但实际只激活一部分专家路由,占用仅 16G
  • 如果你要部署三个模型切换服务,显存就得叠加,还得考虑热切换调度能力

✅ 所以选对硬件形态 = 少踩显存坑 × 提高部署上线速度


✅ 二、国产主流模型推理需求速查表

以下为我们实测常见国产

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值