个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
📘《行业模型价值从何而来:为什么数据比模型更关键?》
🧨 大模型够强了,为什么你还用不好?
过去这一年,大模型是绝对的顶流。
GPT、Claude、文心一言、通义千问……各种“能写、能说、能编程”的 AI 一路狂飙,让人看得热血沸腾。
但当你真正把它拉到业务里,你可能遇到的是——
“它回答得很流畅,但一点都不对路。”
“听起来像是本科生在凑报告,不像个真正懂行的人。”
说白了,你指望它像专家,结果它就是个嘴上功夫特别好的“外行”。
🏥 一个现实中的“翻车”案例
我们曾在某三甲医院里测试 GPT 做病历摘要。结果,医生提问一句:
“患者血糖不稳定、肾功能不全,是否能使用SGLT2抑制剂?”
GPT一本正经地答:
“SGLT2抑制剂有助于控制血糖,但建议根据医生判断使用。”
医生当场给出评价:
“这不是建议,是敷衍。”
“它没有结合病史、肾功能指标、禁忌证,这种答法,病人吃错药要出事的。”
这不是模型“能力不够”,而是它根本没见过真实病例 + 临床处理流程 + 医保目录限制。
🧠 模型的“聪明”,其实全靠它吃过什么
让我们看一张图,直观理解一下:
+------------------+------------------------------+
| 模型类型 | 所学内容 |
+------------------+------------------------------+
| 通用大模型 | 网络语料 / Reddit / 维基百科 |
| 行业场景模型 | 企业数据 / 行业文档 / 工单 |
+------------------+------------------------------+
所以,GPT 牛是牛,但它从没吃过你公司、你医院、你法院、你客户的那套东西。
它说得顺,是它口才好;它答不上,是它见识少。
🍱 段子时间:别指望米其林厨子会做你家那道“红烧肉”
通用大模型就像一个世界级的万能厨子,
你给它全世界的食材,它能做法国大餐、日料拼盘、意大利面……
但你要它做“你妈做的那道红烧肉”,它就懵了。
为什么?
“我没吃过你家的调料,没看过你妈的配方,也不知道你家人喜欢咸的还是甜的。”
这就像你让 GPT 来回答“我们公司 2021 年的退保流程是什么”,它回答得再流畅也答不上来。它压根没吃过你家的数据。
💡 行业模型的核心优势:不是参数多,而是懂你行
这几年我们看到越来越多的案例,都是靠**“喂数据 + 教会业务”**,把模型训成行业专家:
- 某金融公司用 10 年理财对话数据 + 合规问答,训出“智能投顾”
- 某政务平台用 3 万条真实政策解读问题,训出“政务问答专家”
- 某大厂客服团队,把工单 + FAQ 做成微调集,让 AI 快速代答 80%问题
这些模型,不一定参数多,但因为“吃的对”,就比通用模型靠谱。
📌 结论就一句话:
通用模型是“聪明的外行”,行业模型要靠你教它变“懂行的自己人”。
🔭 那我们该怎么训出“自己人”?
很简单,三个问题必须先回答:
- 我们希望模型具备什么行业能力?
- 这些能力依赖于哪些输入 / 输出?
- 我们有没有这些数据,怎么收集、处理、让它可训?
这,就是我们整个专栏接下来要一步步拆解的内容。
🌟 如果本文对你有帮助,欢迎三连支持!
👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新
写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。