个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
技术 Leader 的效率法宝:如何用 DEEPSEEK 审查 PR 与推动技术决策?
📌 摘要
作为技术 Leader,你的工作不只是写代码,更重要的是:
- 审查代码质量、发现风险点
- 指导工程师提升设计水平
- 拿得出判断,拍得了板,推动技术演进
但现实是,你每天面对几十个 PR、复杂架构、多语言混合项目,很难做到:
一看就懂,一审就准,一决就稳。
而 DeepSeek,不只是“代码生成器”,它可以成为你身边的“代码顾问 + 决策辅助系统”,为你提供:
- 高亮风险代码、识别不一致风格、发现设计问题
- 快速理解老项目逻辑、Diff 审查、接口变更识别
- 辅助你做技术方案评估、比较不同实现、生成决策依据文档
这一篇我们就从PR 审查 → 代码风险发现 → 技术选型判断 → 架构评估文案生成等 4 个 Leader 高频场景,讲清楚如何让 DeepSeek 真正参与到你的技术管理工作流中。
一、技术 Leader 真正在代码里干的活
你现在是技术 Leader,不一定还写很多代码,但你每天都泡在代码世界里,做的事说起来不是「开发」,但全是「代码相关」的隐藏重活:
1. 审 PR —— 要看得懂,又不能只看个大概
项目一忙,一个 PR 动了十几个文件、五个人改的,你要一眼搞清楚:
- 这个改动值不值得合?会不会埋雷?
- 谁动了测试逻辑?谁改了数据结构?
- 这一改,是 patch 还是拆迁?
你不能只靠「看 diff」,你需要一个能总结、提炼、预警的辅助工具。
而 DeepSeek 可以替你:一眼扫出这个 PR 的重点和可能踩雷的点。
2. 看老项目 —— 有时候你连自己 3 个月前写的都看不懂
现在轮到你 review 一个「上线两年没人敢动」的老模块:
- 文档没了,接口也不清楚
- controller 里塞业务逻辑,service 里全是 utils
- 明明看着能跑,但谁也不敢改
你要做的不是「看懂」,是「搞清楚它做了啥,有没有坑,能不能动」。
DeepSeek 可以一键告诉你:
“这个模块的核心职责是什么?”、“谁在用它?”、“调用链有多长?”、“能不能重构?”
3. 帮团队选方案 —— 不只是“这个能不能实现”,而是“哪个更靠谱”
你手下两个人写了两套实现,一人搞一个中间件轮子,一人搞一个缓存策略。你要快速评估:
- 哪个实现更清晰?更好维护?
- 性能谁更强?资源谁更轻?
- 哪个未来能扩展?哪个写完马上扔?
你说不出口的时候,让 DeepSeek 来做技术决策助理。
它可以帮你总结优劣、做对比、出结论、生成文档。
4. 技术输出要顶上 —— 文档没人写?Leader 来写
每次项目上线,总得有个:
- 接口文档
- 设计说明
- 代码变更记录
- 架构图解
但开发写完就走,你作为 Leader 得顶上。
用 DeepSeek,把已有代码一丢,生成一套初稿,你只负责修,不负责写。
二、审 PR 不靠猜,靠 DeepSeek 点出重点
🤯 真实情况:
你打开一个 PR,改动一堆文件,你要靠自己猜:
- 改了什么逻辑?
- 改的地方有没有问题?
- 会不会影响别的模块?
- 异常有没有处理?测试有没有补?
你没时间看全,但你又必须拍板。这时候——让 DeepSeek 替你“划重点”。
✅ 用法一:一眼看懂这个 PR 改了啥
Prompt:
总结这个 PR 的核心改动点、影响模块、可能的风险。是否缺失异常处理或测试?
返回结果:
- 增加用户注册逻辑,添加了手机号 phone 字段
- 修改 UserController、UserService、User 实体
- 风险:phone 字段未加格式校验;异常未处理
- 没有补 register 的测试用例
💡 你只花 10 秒输入一句话,DeepSeek 给你写了一份「审查备忘录」。
✅ 用法二:让它帮你指出代码有没有写得不对劲
Prompt:
这段代码有没有异常未处理?有没有重复逻辑?命名规范是否统一?
你不想挨个文件点进去看 try-catch,也不想自己数变量名有没有统一。
让 DeepSeek 来点名:
- 这行没兜底,出错就崩
- 这里 copy 了之前的逻辑,可以抽成函数
- 命名风格不一致,有些用 camelCase,有些用 snake_case
✅ 用法三:自动建议“要不要补测试 + 哪些路径没测”
Prompt:
这段改动需要补哪些测试?有没有异常、边界没覆盖的?
它会告诉你:
- 你加了手机号 phone 字段,但没测格式不合法的情况
- register 方法改了逻辑,但没有写失败场景的断言
- 异常抛出路径没人测,建议补测空参数和数据库错误
✅ Bonus:你还可以说 ——「写一段 review 语给我用」
请根据以上分析,生成一段代码 Review 评论,可以用于 Pull Request 审查
输出:
建议为新增的 phone 字段添加格式校验逻辑,并补充对应的测试用例。当前 register 方法中存在未捕获的异常,建议添加兜底处理以避免服务异常崩溃。
💡 你复制粘贴直接就能用,省时省脑。
总结这一章就是一句话:
你不必把所有代码都读一遍,只需要会提问,DeepSeek 会把关键点给你圈出来。
三、老项目没人动?让 DEEPSEEK 做你的“项目解说员”
你是不是经常遇到这种情况:
- 项目上线两年,代码没动过,但业务又要改
- 模块没人认领了,能跑但没人敢碰
- 一堆命名乱七八糟的工具类,看不出逻辑,看不懂依赖
你不想花两小时啃源码,你只想知道两个事:
它到底是干嘛的?我动了会炸吗?
✅ 1. 看一个目录,直接问:这是什么结构?有什么功能?
Prompt:
请帮我总结这个 src/service 目录中各文件的功能和作用,输出结构为模块名 + 说明。
💡 你把代码贴进去,它会返回:
📁 userService.ts:用户信息查询与更新逻辑
📁 authService.ts:登录、token 校验相关
📁 paymentService.ts:对接第三方支付逻辑,含 retry 机制
你一眼就能知道:哪些是业务逻辑,哪些是对外依赖,哪些不能乱动。
✅ 2. 想改个接口,先问:谁在用这个函数?影响多大?
Prompt:
请帮我分析这个函数 xxx() 的调用关系,它被哪些模块引用,改动后可能影响哪些业务路径?
💡 DeepSeek 会给你一份调用链:
→ userService.ts: getUserById()
↳ 被 userController.ts 调用
↳ 被 orderService.ts 引用用于订单详情查询
风险提示:修改返回值结构可能影响前端用户中心与订单模块
你就知道是不是“一动就炸全家”。
✅ 3. 看着代码像工具方法,问它:这个函数到底是干嘛的?有没有典型用法?
Prompt:
请解释这个函数 xxx() 的功能逻辑,是否存在边界值处理?是否有典型使用示例?
DeepSeek 会帮你:
- 总结函数作用(含参数说明)
- 判断有没有处理空值、异常等场景
- 给出一段使用例子,告诉你典型调用方式
你不用猜变量名、不用从 test 文件里翻,全都有了。
✅ 4. 想重构但不敢动,先问:这个模块的职责清晰吗?有没有结构建议?
Prompt:
请分析这个 service 模块是否符合单一职责,是否需要拆分?哪些函数可以抽出为工具函数?
DeepSeek 会给你如下建议:
- 模块当前职责混杂:既包含用户查询,也处理支付回调
- 建议拆分为 userService.ts 与 paymentCallback.ts
- 函数 xxx() 为纯函数,可抽为 utils/helper.ts
你不但知道“能不能动”,还知道“怎么动”。
✅ 小结:老代码别硬啃,DeepSeek 是你嘴上没说但很想要的“模块解说员”
你想知道的 | 你可以怎么问 |
---|---|
这个模块干嘛的? | 总结目录/文件功能说明 |
谁在用这个函数? | 分析调用链 / 引用模块 |
有啥坑/边界场景? | 检查异常处理 + 提供调用示例 |
要重构从哪儿动? | 拆职责、建议结构重组 |
四、实现方案比不出高下?让 DEEPSEEK 帮你写份「决策辅助材料」
你是不是经常卡在这种场景:
- 两个实现都能跑,但选谁你说不出个所以然
- 方案 A 性能强,方案 B 可扩展
- 大家都说“这个可以”,但没人说“哪个更好”
Leader 最难的不是“判断能不能做”,是“怎么选 + 选得有理”。
这时候,DeepSeek 就能成为你身边的「技术分析师」。
✅ 1. 你有两个实现,想对比逻辑和风险
Prompt:
请对以下两个实现进行对比,分别从结构清晰度、性能、维护性、扩展性角度评价,并给出推荐建议。
它会自动生成对比表:
维度 | 实现 A | 实现 B |
---|---|---|
结构清晰度 | 控制层与服务分离清晰 | 业务逻辑与路由混在一起 |
性能 | 使用缓存提升查询速度 | 实时查询,响应慢但实时性强 |
可维护性 | 模块拆分清晰,依赖少 | 耦合高,改动需连带多模块 |
扩展性 | 可替换数据源 | 固定依赖特定库,不易抽象 |
推荐建议 | 更适合作为长期方案 | 可用于临时功能或快速上线场景 |
✅ 2. 你要汇报给老板/架构评审,想快速写一段技术选型文档
Prompt:
请基于以上对比结果,输出一份技术选型建议,结构包含背景、可选方案、优劣分析、结论推荐。
输出:
📌 背景说明:
当前业务需支持高并发订单查询,现有方案响应延迟超过 SLA 要求。
🛠 可选方案:
A)引入缓存层,按用户维度缓存订单列表;
B)使用异步队列处理订单请求,实现延迟容忍。
📊 分析对比:
方案 A 响应更快、实现成本低,但存在缓存一致性风险;
方案 B 能解耦请求与处理,但实现复杂,且调试难度高。
✅ 推荐方案:
优先选择 A 作为近期优化方案,配合缓存失效机制控制风险;中长期可评估 B。
直接就能发给老板 / 架构群,靠谱且清楚。
✅ 3. 想对比第三方工具、框架、库?也一样行
Prompt:
请比较 Postgres 与 ClickHouse 在实时分析场景下的适配性,从读写性能、易用性、运维复杂度维度分析。
💡 DeepSeek 会生成简洁而清晰的技术选型建议,支持你做决策或教别人选型。
✅ 小结:你不再一个人拍脑袋选方案,DeepSeek 是你的「分析师 + 写手 + 文档助理」
你要干啥 | Prompt 示范 |
---|---|
比两个实现 | 对比结构 / 性能 / 可维护性 / 扩展性 |
写方案建议 | 输出技术选型分析文档 |
评估风险 | 总结影响点 / 模块依赖 / 失败路径 |
写给非技术同事看 | 生成通俗说明文案 |
五、打造技术管理飞轮:把 DEEPSEEK 融入你的日常工作流
作为技术 Leader,你的核心价值不是写代码、不是补 bug,而是:
带着团队更高效、更稳定、更有方向地交付系统。
而 DeepSeek 的真正威力,不在“帮你写代码”,而在于它可以成为你整个技术管理链条中的补能器。
✅ 场景 1:审 PR 时,不再靠自己「翻」和「猜」
你可以直接把 PR 改动贴给 DeepSeek,然后说:
请总结这个 PR 改了哪些核心逻辑、是否有风险点、哪些地方应该补测试。
它会:
- 划出功能点(新增、重构、接口改动)
- 指出隐藏雷点(异常没处理、重逻辑、调用混乱)
- 给出测试建议(缺失路径、断言不全、分支没测)
你就变成了那个“什么都能一眼看穿”的审查神。
✅ 场景 2:带新人,看项目不再靠“师带徒”
过去:新人来了你得带着他手把手讲:
- “这个模块是干嘛的?”
- “哪些文件是重点?哪些能动?哪些不能碰?”
- “这个 utils 写得很糟,但别删,老接口还在用。”
现在你让他开 DeepSeek,问:
请解释这个目录每个文件的作用,是否存在职责混乱或重耦合的问题?
→ 新人 5 分钟内能“看懂项目结构 + 避免乱动核心模块”。
你只需要兜底,不用从头带。
✅ 场景 3:搞重构,用它分析依赖和改动影响范围
要拆服务、迁微服务、重构中台 API?
让 DeepSeek 先帮你做“影响范围预估”:
请分析这个模块的所有对外依赖,以及它对哪些上游服务有调用。
然后你再继续:
如果我要将它拆为独立服务,建议的接口划分方式、模块分布、改动路径有哪些?
→ 你马上有一份「重构提案草案」,甚至可以拉上架构群开评审。
✅ 场景 4:推动规范,生成风格模板 + 重构规则 + check list
你想团队统一一下代码风格(比如命名规范、异常处理标准、注释格式),可以让 DeepSeek:
请帮我生成一份函数风格规范,包括命名建议、长度控制、异常兜底、注释模板。
然后再问它:
请把下面这些文件按该规范检查一遍,有问题的指出来。
→ 你就拥有了一个「团队规范审查机器人 + 风格模板生成器」。
✅ 场景 5:拉齐技术水平,用 DeepSeek 做“知识传递器”
有经验的老工程师写了复杂逻辑,没人敢动?
你就让他们配合 DeepSeek 输出:
请解释该函数逻辑流程、使用场景、输入输出说明,并生成 Markdown 形式的注释。
然后把它贴进文档库、交接手册、接口说明里。
技术沉淀从“靠人”变成“靠系统 + AI 合作”。
六、提示词推荐合集:技术 Leader 专属 Prompt 工具箱
这一章直接送你一份「能上手复用」的提示清单。
你平时遇到的 90% 情况,都能一句话交给 DeepSeek 搞定👇
🧾 审查代码类
请总结这个 PR 改动了哪些核心功能点,影响哪些模块,有无风险点。
请检查这段代码是否存在未处理异常、重复逻辑、魔法数字、命名不一致的问题。
是否需要补充测试?哪些分支路径或异常场景没有覆盖?
📂 理解项目结构类
请解释 src/modules 目录下各文件作用,按模块职责进行分类。
分析这个模块的依赖图,哪些对外暴露接口?谁在调用?
这个函数的典型使用方式、边界输入、异常处理逻辑是怎样的?
🛠 技术选型 & 方案评估类
请比较 A 实现和 B 实现,从可维护性、扩展性、性能、复杂度四个维度输出优劣分析。
写一段技术选型建议,包含背景、方案、分析、结论,输出为 Markdown 格式。
我要将 X 模块重构为独立服务,帮我生成拆分建议、接口定义、改动路径清单。
📑 文档输出类
请为这个函数自动生成函数头注释,包括参数说明、返回值、注意事项、调用示例。
将以下目录中的每个模块生成功能说明文档,并统一成 Markdown 格式。
请生成一份团队代码规范模板,涵盖命名规则、注释标准、异常处理建议、目录结构规范。
✅ 小技巧:
你可以把这些 Prompt 收集起来做一个《技术 Leader × DeepSeek 工作流模板库》,随用随调,交给工程师复用也完全没问题。
七、小结
我们来复盘一下:你不是要“会写代码的 Leader”,你是要做一个:
- 能一眼看穿复杂 PR
- 能清晰说出哪个方案靠谱、哪个代码有坑
- 能用最小的时间搞懂最老的代码
- 能带人、能定规范、还能补上团队文档输出的人
你不需要事无巨细全靠自己写。你要的是:一个可靠的技术第二大脑。
现在,这个角色,DeepSeek 完全可以胜任。
✅ 技术 Leader × DeepSeek 最佳搭配关键词
- 审 PR → Prompt:总结变更 + 风险 + 测试建议
- 查模块 → Prompt:谁用它?干嘛的?可拆吗?
- 比方案 → Prompt:按维度输出优劣分析 + 选型建议
- 出文档 → Prompt:生成注释 + 生成目录说明 + 输出 Markdown
你可以不写,但你要懂怎么让 AI 替你搞定关键动作。
这,才是未来技术 Leader 的“提效范式”。
🌟 如果本文对你有帮助,欢迎三连支持!
👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新
写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。