个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。
《大模型是怎么运作的?一文拆解底层原理、架构设计与系统关键路径》
摘要
当前大模型从训练、推理到部署正加速走入产业系统,但很多从业者只熟悉调用,不了解背后机制。这篇文章从原理层到系统架构逐层拆解一个大模型是如何“理解、计算、输出”的,解析 Transformer 的内部结构,探讨大模型从参数存储、KV 缓存、序列并行到 Attention 优化等关键机制,最终串联形成一个“端到端”系统认知路径。适合所有希望深入理解大模型底层设计的技术人。
目录结构
一、为什么要理解大模型的“内部结构”?
- 只是会调用接口,已经不够用了
- 系统瓶颈常出在“架构不清”
- 哪些人需要真正读懂它的原理
二、Transformer 模型的底层构成原理
- 多层堆叠的本质:Residual + LayerNorm + Attention + MLP
- Self-Attention 是怎么计算的?Q/K/V、Softmax 与 Mask 的关系
- Position Embedding 与 Rotary Position Embedding(RoPE)的核心作用
- Decoder-only 架构与 Encoder-Decoder 的差异
三、大模型训练时的“并行结构”拆解
- 为什么需要模型并行?参数太大怎么办
- 数据并行 vs 张量并行 vs 管道并行
- Megatron-LM 的三大并行路径与通信成本分析
- Checkpoint 合并与权重分布策略
四、推理路径上的系统设计细节
- 推理时为什么“快不起来”?序列依赖与 KV 缓存机制
- KV Cache 是怎么实现的?缓存更新机制详解
- Prefill vs Decode:两阶段推理流程详解
- Logits 输出、Top-K、Top-P 与温度的作用机制
五、Prompt 是怎么影响模型行为的?
- Prompt 的位置决定上下文窗口的使用方式
- 长上下文机制中的 Attention 范围裁剪技巧
- ALiBi、FlashAttention、Rope Cache 的优化路径
- 多轮对话中的 Token 滑窗与历史剪枝策略
六、大模型的参数存储与系统结构图
- 参数加载的形式:静态图 vs 动态图
- ONNX / Safetensors / HuggingFace 权重格式解析
- 多 GPU/多节点加载模型的具体方法
- 一个完整的大模型推理系统架构图(图示 + 文字解析)
七、总结:如何构建自己的“模型结构理解体系”?
- 建议阅读路径:代码、论文、开源项目与系统工程文档
- 面试、调优、推理优化中该如何应用这些原理
- 从原理到系统,才能成为真正的大模型工程师
一、为什么要理解大模型的“内部结构”?
过去一年,大模型像瀑布一样砸进了我们的系统开发和业务逻辑中。开发者开始调用模型接口、拼接 Prompt、部署微调后的权重,但随着实际落地项目增多,一个核心问题变得越来越突出:
“我明明换了更大参数的模型、GPU 也够用,为什么推理速度上不去?”
“我用了 LoRA 微调,为什么精度反而下降?”
“我想把多模型合并部署,结果权重爆了内存,该怎么拆?”
这些问题,光靠“会用”是不够的。你需要真正理解“大模型在做什么”。模型调用接口只是冰山一角,背后涉及的是从参数加载到序列计算的完整推理路径,而每一步,都与底层架构紧密相关。
1.1 不是写 Prompt、调接口就叫懂大模型
当前不少初级从业者把大模型当作一个“可以交谈的 API”来看,甚至很多教程都鼓励“零代码也能用大模型”,但当你面对真实业务系统,事情并不那么简单。
比如:
- 你要优化响应时延,但不知道 KV Cache 的存储位置在哪;
- 你想融合多个微调模型做 Ensemble,但不了解模型参数结构;
- 你部署了 INT8 压缩模型,却遇到精度偏移,而查不到是哪一层造成的。
只有深入理解模型内部结构,你才知道:
- 每一层 Attention 和 MLP 在计算什么;
- 输入是怎么被切分成 token、嵌入、经过旋转位置编码传入模型;
- 输出 logits 是怎么生成、怎么采样的。
懂结构,才能调行为;懂路径,才能控系统。
1.2 系统瓶颈,往往就藏在你不了解的那一层
大模型不是“黑盒”也不是“魔法”。它是一个层层堆叠的系统结构,从输入、计算、输出,每一环都可以优化,也都可能成为性能瓶颈。
我们以最典型的推理时延问题为例:
推理环节 | 可能的瓶颈 | 需要了解的结构 |
---|---|---|
Token 生成慢 | 序列依赖,不能并发生成 | Decoder-only 架构,Auto-Regressive 机制 |
KV Cache 爆显存 | 缓存机制、上下文过长 | Attention Cache、RoPE、FlashAttention |
多模型切换慢 | 权重加载 IO 慢 | Checkpoint 格式、权重分片结构 |
上下文不对齐 | Prompt 编排错误 | 输入位置编码、Context Window 管理 |
你会发现,这些问题的根源,并不是调用方式,而是对模型“是如何构建与运作的”理解不够深入。