【策略模型结构】DeepSeek强化智能体中的GRPO架构与高维输入建模

个人简介
在这里插入图片描述
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!

专栏导航

观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。


【策略模型结构】DeepSeek强化智能体中的GRPO架构与高维输入建模

GRPO策略优化、强化学习策略模型、DeepSeek智能体决策模型、Agent行为策略架构、高维状态建模、多模态状态输入、tool选择策略、策略头结构设计、reward反馈机制、text+table+image输入融合、prompt编码策略、策略网络联合优化、RL输入结构、策略输出结构设计、动作参数建模、multi-head策略网络结构、agent训练路径优化


摘要

本篇深入解析 DeepSeek 强化智能体系统中基于 GRPO(Generalized Reinforcement Policy Optimization)策略的智能体行为决策机制。从高维输入建模出发,我们将详细讲解智能体如何编码文本、表格、图像等多模态状态输入,如何将行为链中的 memory / context / prompt 映射为可学习向量,如何设计多头策略网络(Tool Select Head + Action Param Head),以及 GRPO 如何在多 Agent 任务中保持策略一致性与可调优性。目标是帮助工程实践者构建具备泛化能力与可训练结构的 RL 智能体策略内核。


目录


第一章:策略模型不是选择器,而是 Agent 的决策大脑
  • 为什么工具选择 ≠ 行为策略
  • 强化智能体需要的状态理解力与输出控制力
  • GRPO 与传统 PPO/BC 的本质区别

第二章:高维状态输入建模:text × table × image 如何拼接为决策输入
  • 如何将 memory_entry 构建为状态语义向量
  • Prompt 拼接语义提取策略与 Position Encoding
  • 表格结构 × 图像 embedding 如何融合输入状态
  • Agent ContextEncoder 的输入层结构设计建议

第三章:GRPO 策略网络结构设计与多头输出机制
  • PolicyNet 结构解构:state_encoder × tool_head × param_head
  • ToolHead:tool logits 输出 + masking + sampling
  • ParamHead:动作参数生成(如摘要目标、搜索关键词)
  • 多策略结构的 reward 权重融合与 loss 反向传导机制

第四章:策略输出结构、可调策略头与行为路径控制
  • 策略输出结构设计建议(结构化 JSON 输出 + confidence)
  • tool_select + action_param 联动方式与行为路径复现
  • 支持行为链 replay × diff × trace-based 策略评估结构
  • 训练过程中如何通过 reward shaping 控制策略结构演化

第五章:多 Agent 策略模型联合训练结构与演化范式
  • 多 Agent 如何共享 encoder,不共享策略 head
  • 联合策略训练 vs 独立策略强化的架构分歧
  • 策略版本管理 + trace-based reward 联动设计
  • 企业级推理部署中策略稳定性 + 多版本上线建议

第一章:策略模型不是选择器,而是 Agent 的决策大脑


1.1 为什么“选择工具”≠策略模型的全部能力?

传统做法:

if "搜索" in prompt:
    call(tool="search")

或者简单分类器:

ToolClassify(prompt)"search_agent"

这种做法存在严重问题:

  • 无法理解输入状态(如 memory 上下文 / prompt 多模态)
  • 无法学习行为路径结构(是否需要调用 / 何时终止)
  • 无法微调策略行为(比如“先做分析、再调用工具”)

策略模型的本质:从状态空间中抽象 agent 行为偏好 → 映射成可执行动作


1.2 GRPO 是什么?为什么适合 DeepSeek 智能体系统?

GRPO(Generalized Reinforcement Policy Optimization)不是一个单独算法,而是一类策略建模框架,具备以下特性:

特性描述对 DeepSeek 的意义
高维状态输入可接入 text / table / image 等结构支持多模态行为链调度
多头策略输出支持 Tool 分类 + 参数生成分开优化精准控制 tool 行为与调用配置
灵活目标函数支持 reward 多源融合(trace / callback / user)可适应多种训练方式(RL / imitation)
可组合结构encoder-decoder / transformer / graph 都可封装可集成 DeepSeek 现有行为链结构

1.3 一个标准强化策略模型需要哪些能力?

输入必须包含:
  • 当前 memory 构成的上下文语义(文本 + 历史)
  • 当前行为链的位置(是否已调用 tool?是否 fallback?)
  • 当前模态输入结构(表格 / 图像 / prompt)
  • 上一步动作及结果(observation embedding)
输出不仅是“调用谁”,而是:
输出维度含义
tool_select_logits多工具选择概率分布
action_params工具调用参数结构(如关键词、查询方式)
confidence_score当前行为决策置信度
terminate_signal是否中止链路执行

最终建议统一为结构化行为输出:

{
  "tool": "search_agent",
  "params": {
    "query": "分析三季度营收趋势",
    "method": "fuzzy"
  },
  "confidence": 0.91
}

1.4 GRPO 在 DeepSeek 中的核心定位

GRPO 策略模型是 DeepSeek 的智能决策中枢,其作用包括:

层级功能模块位置
推理入口接收 prompt / memory / contextReasoner 调度前
状态理解将模态拼接结构编码为 state embeddingContextEncoder
策略输出输出 tool + 参数结构ToolHead + ParamHead
trace 写入结构行为写入 trace_eventTraceWriter.record(“REASONER_ACTION”)
training 输入转为 RL Samplesample_builder.from_reasoner_output(…)

1.5 工程建议:GRPO 策略模型设计准备项清单

项目建议
策略模型建议分为 encoder × tool_head × param_head 三层便于状态感知 × 动作输出解耦优化
context / memory_entry 建议标准化为 text_feature × modal_embedding保证状态输入一致性
tool_head 输出建议支持 masking(某些工具不可用时)保证执行链安全性
每次策略输出建议写入 trace_event (type=“REASONER_ACTION”)支持行为链 replay / diff
trace_id × policy_version 建议绑定写入行为结构支持后续策略优化效果回溯

第二章:高维状态输入建模:text × table × image 如何拼接为决策输入


2.1 策略模型第一件事:不是选择动作,而是理解状态

在 DeepSeek 推理系统中,一个策略模型面对的输入远不是一个单一的 prompt,而是一个复杂、高维、多模态状态场,由以下几部分构成:

输入源内容类型来源路径
memory_entry上下文语义片段(文本 + 结构)MemoryStore.query(context_id)
当前 prompt用户输入 / 上轮行为指令Reasoner context builder
tool observation上一步 tool 调用结果摘要Callback.result
多模态输入表格 / 图像 / 混合任务结构ToolInput / API Upload Input
当前链路状态是否调用过 tool、调用是否失败等LangGraph 状态片段

这些都必须编码进策略网络的状态向量中。


2.2 memory_entry × context 结构转 embedding 的标准流程

一个 memory_entry 通常形如:
{
  "type": "tool_result",
  "content": "search_result: 三季度营收上涨23%",
  "created_by": "search_agent",
  "timestamp": 1714012345
}

建议做以下处理:

  • content:tokenize + position embedding
  • created_by:嵌入为 Agent Embedding(如 planner / searcher)
  • type:使用 type embedding(如 INPUT / TOOL_RESULT / USER_FEEDBACK)
  • timestamp:作为时间偏移位置 ID(支持时间对齐)

建议拼接格式:

[TYPE_EMB] + [AGENT_ID_EMB] + [POSITION_EMB] + Token(content)

可统一输入 ContextEncoder:

class ContextEncoder:
    def encode(memory_entries: List[MemoryEntry]) -> Tensor:
        ...

2.3 表格输入建模结构建议

表格的状态是结构化数据,建议建模方式:

模型模块功能
TableSchemaEncoder将字段名、表头转为嵌入向量
TableCellEncoder将部分重要值采样或摘要为语义内容
TableAttentionLayer多字段之间的依赖信息建模
TableSummaryVector最终表格摘要向量,供策略头使用

示例结构:

table_emb = TableEncoder(headers=["营收", "利润"], rows=[[230, 32], ...])

可采用 TAPAS / TabTransformer 或结构 prompt 编码策略。


2.4 图像输入建模结构建议

图像通常来自用户上传或上游工具输出,建议处理流程:

  1. 使用图像 Encoder(如 CLIP)生成视觉特征向量
  2. 生成 image caption / OCR text 作为辅助文本状态
  3. 拼接至 Prompt Encoding 的特殊段中

示例:

image_vector = image_encoder(img_tensor)  # shape: [1, 768]
caption = ocr_model(img)  # 生成辅助描述

最终拼接:

[IMG_EMB] + [OCR_TOKENS] + [MEMORY_TOKENS] + [PROMPT]

2.5 Prompt 编码建议:位置语义控制 × 状态对齐机制

Prompt 中建议加入以下控制结构:

模块建议机制
position_id区分 memory / prompt / feedback 的 token 区段
field_id标注字段来源(如来自 planner / searcher)
task_id embedding标注当前推理任务所属模块类型
prefix_embedding在 Prompt 前加入 Prompt 类型(问答 / 摘要 / 多轮)嵌入项

这些控制信号可帮助策略模型精准识别:

  • 当前处于哪一阶段
  • 是否需要决策
  • 可调用哪些 tool(做 masking)
  • 上文语义结构是否完整

2.6 最终建议:状态输入向量结构统一示意图

MemoryEntry
ContextEncoder
Table
TableEncoder
Image
CLIP / OCR
Prompt
PromptEmbedder
StateConcat
GRPO PolicyNet

状态融合策略:

state = concat(context_vec, table_vec, image_vec, prompt_vec)

可作为策略模型主干输入 PolicyNet.forward(state)


2.7 工程建议:高维状态输入结构构建能力清单

项目建议
memory_entry 建议标准化字段:type / created_by / content支持统一位置嵌入与 agent embedding
prompt 编码建议支持 token 分区(prefix / core / suffix)有助于模型识别 Prompt 结构
image / table 模态建议使用统一 ModalityEncoder 封装减少策略头结构改动
context 编码建议支持“摘要 + 原文”两种粒度配置适配不同精度/性能要求
状态向量结构建议输出 shape: [batch_size, feature_dim]与策略 head 对接无缝融合

第三章:GRPO 策略网络结构设计与多头输出机制


3.1 策略网络必须有结构,而非“黑盒输出”

在强化智能体系统中,一个优秀的策略网络不仅要做出动作选择,更要具备:

能力描述
状态理解能识别 memory、模态输入、上下文状态的行为含义
多策略头输出支持“选择谁”(Tool Select)与“怎么用”(Param 生成)分开建模
输出结构可控动作结构必须明确可执行(结构化 JSON)
可训练性每一个输出项都能在 RL 框架中被独立打分和优化

3.2 GRPO 策略模型结构:三层设计推荐

StateEncoder → PolicyHead → ActionOutput
  • StateEncoder:编码拼接后的 context + prompt + multi-modal 向量
  • PolicyHead
    • ToolSelectHead: 输出 tool logits
    • ParamGenHead: 输出 tool params(query / flags / weights)
  • ActionOutput:结构化 JSON + reward 标注路径追踪

结构示意图:

State Vector
ToolSelect Head
ParamGen Head
tool_logits
tool_params
Structured Action JSON

3.3 ToolSelect Head 设计建议:分类器 + 可屏蔽机制

class ToolSelectHead(nn.Module):
    def forward(self, state):
        raw_logits = self.linear(state)  # [batch, num_tools]
        masked_logits = mask_invalid_tools(raw_logits, tool_mask)
        return F.softmax(masked_logits, dim=-1)
  • 支持 mask(某些 tool 不可用时置 -∞)
  • 输出为 logits + action prob,可用于 RL policy gradient
  • 训练阶段 loss 使用 NLL 或交叉熵(从 trace 行为链中提取目标)

3.4 ParamGen Head 设计建议:参数结构生成器

class ParamGenHead(nn.Module):
    def forward(self, state):
        hidden = self.encoder(state)
        param_vec = self.param_mlp(hidden)  # e.g. [batch, 64]
        return self.decode_param(param_vec)

建议设计为:

模块功能
MLP Encoder对 state 编码结构进行压缩
ParamDecoder输出结构化参数(如 query string、filter type、数值 threshold)
输出格式推荐 JSON-compatible 结构,如 {"query": "xxx", "filter": "strict"}

3.5 策略输出结构统一封装建议

建议所有输出封装为标准结构体:

class StructuredAction:
    def __init__(self, tool: str, params: dict, confidence: float, terminate: bool):
        ...

最终写入:

{
  "tool": "table_summarizer",
  "params": {
    "summary_type": "trend",
    "time_range": "Q1-Q3"
  },
  "confidence": 0.87,
  "terminate": false
}

3.6 reward × loss × 多策略头训练结构建议

模块Loss 类型数据源用途
ToolSelectHeadCrossEntropy / PPOtrace 中实际调用工具名主策略方向学习
ParamGenHeadMSE / BERTScore / RL reward工具执行结果 + 回调反馈动作参数调优
Confidence Scoreregression + rewardcallback outcome × user_feedback不确定性评估

你可以将这几个 loss 加权组合:

total_loss = w1 * tool_loss + w2 * param_loss + w3 * confidence_loss

w1/w2/w3 可动态调整,或基于 reward value 自适应加权(如 GRPO 原始论文策略)。


3.7 工程建议:策略模型结构落地能力清单

项目建议
tool_logits 输出建议保留 raw_logit + softmax prob支持 RL policy gradient 回传
param_head 建议可配置输出 schema(JSON Schema 模式)保证工具调用合法性
action 输出结构建议强绑定 trace_id + policy_version用于 replay + debug + version trace
多策略头建议各自独立 loss track,可多路 reward 分析提高调优灵活性
所有输出建议打包为 StructuredAction,可直接写入 memory / trace保证行为链结构完整性

第四章:策略输出结构、可调策略头与行为路径控制


4.1 策略输出 ≠ 模型 log,而是整个行为链下一跳的“控制令牌”

你系统中的 Reasoner 并不是“生成文本”的模块,而是:

接收状态 → 输出 StructuredAction → 控制下一跳行为链路径(执行 tool / 生成 plan / 中止链路)

所以,策略模型输出必须具备:

功能描述
可执行性能被 ToolRouter / Dispatcher 直接调用(含 tool 名与参数)
可观测性能被 trace_writer 写入行为链,供 replay / debug / RL 使用
可训练性能与 reward 结构挂钩,形成强化学习反馈路径
可重建性行为路径必须在 replay 时原样复现,无随机丢失

4.2 策略输出标准结构建议

建议将所有策略输出打包为如下结构:

class StructuredAction:
    tool: str                  # 工具名
    params: dict               # 工具调用参数
    confidence: float          # 策略置信度
    terminate: bool            # 是否结束本轮推理
    policy_version: str        # 当前策略模型版本

并在行为链中记录为 trace_event:

{
  "type": "REASONER_ACTION",
  "trace_id": "xyz",
  "context_id": "ctx-abc",
  "tool": "chart_generator",
  "params": {"target_column": "Q3_profits"},
  "confidence": 0.83,
  "terminate": false,
  "policy_version": "grpo-v2.0"
}

4.3 从策略输出 → 行为链路径跳转逻辑建议

def route_action(structured_action: StructuredAction):
    if structured_action.terminate:
        return EndNode()
    else:
        return ToolExecutor.invoke(
            tool=structured_action.tool,
            params=structured_action.params
        )

你可以构建:

  • 可调工具调用路径(ToolRouter)
  • 支持链式参数继承(ToolParams × memory entry)
  • 行为追踪标记写入 memory(MemoryEntry.type=“REASONER_ACTION”)

4.4 支持行为链 replay / diff 的行为记录设计建议

每一轮 Reasoner 行为建议同步写入:

模块内容用途
trace_writertool + params + confidence + policy_version用于 trace view / RL replay
memory_writer内容摘要 + 原始参数用于 prompt 重建
reward_storetrace_id → action × reward用于 RL sample 评分对齐

并提供 replay 结构:

class ActionTrace:
    def __init__(self, trace_id, step_id, action: StructuredAction, memory_context):
        ...

用于:

  • 策略效果对比
  • chain 版本调试
  • 策略行为的可解释路径重构

4.5 多策略版本差异评估路径(trace diff)

推荐结构:

class TraceDiffer:
    def compare(trace_a: str, trace_b: str) -> List[DiffStep]

输出结构:

[
  {
    "step": 2,
    "tool_v1": "search_agent",
    "tool_v2": "summarizer_agent",
    "confidence_diff": 0.18,
    "param_diff": {"query": "changed"}
  }
]

应用场景:

  • 策略更新前后效果比对
  • 工具链调用稳定性评估
  • 多 Agent 策略行为轨迹调试

4.6 工程建议:策略输出与行为链闭环落地结构清单

模块建议
Reasoner 输出建议为 StructuredAction支持统一 trace × tool 执行链
所有策略调用建议写入 trace_event(带版本)用于训练回放与策略评估
trace_view 建议支持 StructuredAction 解析视图显示 tool / param / confidence / terminate 路径
MemoryEntry 可存储参数摘要 → PromptBuilder 用于上下文回放形成“基于策略链”的 prompt 重建能力
支持 TraceDiffer.compare(trace_id_v1, trace_id_v2)构建策略行为对比评估链

第五章:多 Agent 策略模型联合训练结构与演化范式


5.1 多 Agent 系统中,策略不再是“一个网络”,而是“多个智能体行为倾向的演化集合”

在你系统中,一个典型任务链可能包括:

planner_agent → search_agent → summarizer_agent → feedback_agent

每个 Agent 拥有独立角色:

Agent功能策略需求
planner_agent分解任务、规划路径是否调用工具?调用顺序?
search_agent提取信息搜什么?怎么搜?
summarizer_agent合成结果哪些信息有用?如何组织?
feedback_agent打分建议如何评价行为?是否干预策略?

所以,策略模型不是共享的黑盒,而是可组合、可独立调优的策略系统结构。


5.2 联合训练 vs 独立训练:两种策略设计范式

策略类型架构特征适用场景
独立训练(per-Agent)每个 Agent 拥有独立策略头(tool / param / reward)模块解耦、训练更稳定
联合训练(multi-Agent policy)多个 Agent 共享 encoder,策略结构可互相影响任意角色协同、支持行为融合

推荐组合策略

  • 所有 Agent 共享 ContextEncoder(memory / prompt 编码层)
  • 每个 Agent 拥有独立 PolicyHead(ToolHead + ParamHead)
  • 支持 agent_id embedding 引入行为偏向性

示例结构:

class MultiAgentPolicy(nn.Module):
    def forward(self, state, agent_id):
        shared_vector = self.encoder(state)
        agent_head = self.policy_heads[agent_id]
        return agent_head(shared_vector)

5.3 trace-based reward 路由机制建议

一条 trace 行为链包含多个 agent 行为片段:

[
  {"agent": "planner_agent", "tool": "search_agent", "reward": 0.4},
  {"agent": "search_agent", "tool": "table_extractor", "reward": 0.9},
  {"agent": "summarizer_agent", "tool": "summarizer", "reward": 1.0}
]

你可以按 agent_id 构建:

class RewardRouter:
    def assign(trace_id) -> Dict[agent_id, List[RLSample]]:
        ...
  • 每个 Agent 仅接收自己行为链段落的数据
  • 训练中使用独立 sample pool
  • 支持采样分布、策略演化统计

5.4 策略演化路径控制建议:版本化 + 策略对比 + 上线管控

建议构建:

class PolicyRegistry:
    def register(agent_id, policy_version, model: nn.Module)
    def route(agent_id, context) -> current_version
    def compare(trace_id_v1, trace_id_v2) → diff

用于:

  • 每个 Agent 策略版本独立管理
  • 上线前支持 trace diff + reward gain 曲线对比
  • 多版本可并行在线运行(A/B Test)

你可以记录:

{
  "trace_id": "abc123",
  "agent_versions": {
    "planner_agent": "v1.2",
    "search_agent": "v2.1",
    "summarizer_agent": "v1.5"
  }
}

用于调试 / 对比 / 回放 / 策略训练样本追踪。


5.5 多策略行为链可解释控制建议

你可以为每个 Agent 的行为链构建:

{
  "agent": "search_agent",
  "step": 2,
  "tool": "data_search",
  "param": {"query": "营收增长趋势"},
  "confidence": 0.82,
  "reward": 0.9,
  "policy_version": "v2.1"
}

并生成链式可视结构:

graph TD
    A[planner v1.2 → search_agent] --> B[search v2.1 → table_extractor]
    B --> C[summarizer v1.5 → summarizer]

用于:

  • 策略可解释性提升
  • 多 Agent 路由行为分析
  • 精细化训练策略调优

5.6 工程建议:多策略协同训练系统落地清单

模块建议
每个 Agent 拥有独立 PolicyHead,结构支持多样化(分类器 / 参数生成器)保证策略可控性
context_encoder 建议共享,输入支持 agent_id embedding统一模态状态建模
trace_event 建议记录每次策略动作结构 + policy_version支持行为链复现与训练数据追踪
PolicyRegistry 建议具备版本对比、上线管控、AB测试控制能力实现企业级可演化策略系统
reward_router 建议支持 trace_id → agent_id → sample 分发机制提高训练数据隔离性与可靠性

小结

本篇系统拆解了 DeepSeek 强化智能体中的策略模型结构设计。从 GRPO 核心理念出发,我们逐步构建了:

  • 高维状态输入拼接策略(memory / prompt / table / image)
  • 策略网络结构(tool_head + param_head)与行为输出封装逻辑
  • 与 Reasoner / ToolRouter / trace_writer 的闭环行为链连接方式
  • 多策略模型的联合训练结构与 Reward 路由、trace-based diff 评估机制
  • 策略版本控制、调试分析与多智能体协同行为演化系统设计建议

🌟 如果本文对你有帮助,欢迎三连支持!

👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新


写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值