ResNet系列及其变体(五)—DenseNet

本文深入探讨DenseNet,一种改进自ResNet的深度学习模型。DenseNet通过密集连接每个层,使得任意两层间直接相连,增强了梯度反向传播,简化网络训练,减少了vanishing-gradient问题。其特征重用机制降低了参数数量,提高了计算效率。DenseBlock和Transition模块是其关键结构,尽管可能导致较高的GPU内存消耗,但可以通过优化实现高效运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇主要介绍DenseNet,其他ResNet系列及其变体介绍见如下blog目录 :

ResNet系列及其变体目录


DenseNet

Densely Connected Convolutional Networks

Residual networks behave like ensembles of relatively shallow networks指出在ResNet训练过程中,梯度的主要来源是shortcut分支。 DenseNet针对ResNet中的shorcut进行改进。既然shortcut有效,多加点!

DenseNet 的核心思想:对每一层都加一个单独的 shortcut,使得任意两层之间都可以直接相连。
在这里插入图片描述

  • DenseBlock是包含很多层的模块,每个层的特征图大小相同,层与层之间采用密集连接方式。
  • Transition模块是连接两个相邻的DenseBlock,并且通过Pooling使特征图大小降低。BN+ReLU+1x1 Conv+2x2 AvgPooling

### 密集卷积网络 (DenseNet) 的 Python 实现 密集卷积网络(DenseNet),作为一种改进的ResNet变体,在图像分类任务中表现出色。通过构建更紧凑且高效的模型架构,DenseNet实现了参数的有效利用和梯度的良好传播[^4]。 #### GitHub 上的 DenseNet 实现 在GitHub平台上存在多种基于PyTorch和TensorFlow框架下的DenseNet实现版本: - **Keras/TensorFlow 版本** PyImageSearch提供了详细的教程以及对应的源码来帮助理解如何使用Keras搭建DenseNet模型。此资源不仅限于理论讲解,还包括完整的训练流程说明。 - **PyTorch 版本** Qubvel团队维护了一个高质量的计算机视觉库,其中包含了EfficientNet等多种先进模型的同时也支持DenseNet的不同预训练权重加载选项[^1]。 为了更好地展示具体的实现方式,下面给出一段简化版的DenseNet定义代码片段(采用PyTorch风格): ```python import torch.nn as nn import torch.nn.functional as F class Bottleneck(nn.Module): def __init__(self, nChannels, growthRate): super(Bottleneck, self).__init__() interChannels = 4*growthRate self.bn1 = nn.BatchNorm2d(nChannels) self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(interChannels) self.conv2 = nn.Conv2d(interChannels, growthRate, kernel_size=3, padding=1, bias=False) def forward(self, x): out = self.conv1(F.relu(self.bn1(x))) out = self.conv2(F.relu(self.bn2(out))) out = torch.cat((x, out), 1) return out def densenet(): model = nn.Sequential() # Add layers to the model... return model ``` 上述代码展示了Bottleneck层的设计思路及其组合成整个DenseNet的过程概述。实际应用时还需要根据具体需求调整输入输出尺寸、加入更多组件如Transition Layers等细节部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值