本篇主要介绍DenseNet,其他ResNet系列及其变体介绍见如下blog目录 :
DenseNet
Residual networks behave like ensembles of relatively shallow networks
指出在ResNet训练过程中,梯度的主要来源是shortcut分支。 DenseNet针对ResNet中的shorcut进行改进。既然shortcut有效,多加点!
DenseNet 的核心思想:对每一层都加一个单独的 shortcut,使得任意两层之间都可以直接相连。
- DenseBlock是包含很多层的模块,每个层的特征图大小相同,层与层之间采用密集连接方式。
- Transition模块是连接两个相邻的DenseBlock,并且通过Pooling使特征图大小降低。BN+ReLU+1x1 Conv+2x2 AvgPooling