仿真环境的采样速度慢,是强化学习的一个瓶颈。例如,论文中常用的 MuJoCo 环境,台式机或服务器的 CPU 上运行仿真环境,一小时大概采集十万或百万步(1e5 或 1e6 步);训练一个智能体(收敛后)需要十多个小时。
加快仿真环境的采样速度,通常有以下方法:
- 增加并行的 Worker 数(Multiple workers)
- 增加并行的 Env 数(Vectorized Env)
NVIDIA 的 Isaac Gym(上图中右下角),用单块 GPU 一小时内可以采集一亿步(1e8 步)。也就是说,GPU 上的并行仿真环境,采样速度快了两个量级! 下图是我们的一组测试结果
Isaac Gym 的命名根据 Isaac Newton 艾萨克 · 牛顿