ICML 2024 | 牛津提出合作图神经网络Co-GNNs,更灵活的消息传递新范式

引用次数:9

引用格式:Finkelshtein B, Huang X, Bronstein M, et al. Cooperative graph neural networks[J]. arXiv preprint arXiv:2310.01267, 2023.

一、摘要

本文提出了一种训练图神经网络的新框架“合作图神经网络”(Co-GNNs),其中每一个节点可以被看作一个独立的玩家,可以在消息传递之前基于当前特征计算出一个动作分布,然后根据分布采样选择该节点在本层的动作

可选择的动作分为以下几种:“倾听”、“广播”、“倾听和广播(又称标准)”或“隔离”。Co-GNNs提供了一种更灵活和动态的消息传递范式,其中每个节点了可以根据其状态确定自己的策略,并有效地在学习过程中探索图拓扑结构。

论文标题:Cooperative Graph Neural Networks

论文链接:https://arxiv.org/abs/2310.01267

代码链接:https://github.com/benfinkelshtein/CoGNN

Towards Data Science:https://towardsdatascience.com/co-operative-graph-neural-networks-34c59bf6805e

二、消息传递与信息瓶颈

大多数图神经网络都属于消息传递神经网络(Message passing neural networks, MPNNs&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值