注意力机制讲解与代码解析

一、SEBlock(通道注意力机制)

先在H*W维度进行压缩,全局平均池化将每个通道平均为一个值。
(B, C, H, W)---- (B, C, 1, 1)

利用各channel维度的相关性计算权重
(B, C, 1, 1) --- (B, C//K, 1, 1) --- (B, C, 1, 1) --- sigmoid

与原特征相乘得到加权后的。

import torch
import torch.nn as nn

class SELayer(nn.Module):
    def __init__(self, channel, reduction = 4):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1) //自适应全局池化,只需要给出池化后特征图大小
        self.fc1 = nn.Sequential(
            nn.Conv2d(channel, channel//reduction, 1, bias = False),
            nn.ReLu(implace = True),
            nn.Conv2d(channel//reduction, channel, 1, bias = False),
            nn.sigmoid()
        )
        
    def forward(self, x):
        y = self.avg_pool(x)
        y_out = self.fc1(y)
        return x * y_out

二、CBAM(通道注意力+空间注意力机制)

CBAM里面既有通道注意力机制,也有空间注意力机制。
通道注意力同SE的大致相同,但额外加入了全局最大池化与全局平均池化并行。

空间注意力机制:先在channel维度进行最大池化和均值池化,然后在channel维度合并,MLP进行特征交融。最终和原始特征相乘。 

import torch
import torch.nn as nn

class ChannelAttention(nn.Module):
    def __init__(self, channel, rate = 4):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.fc1 = nn.Sequential(
            nn.Conv2d(channel, channel//rate, 1, bias = False)
            nn.ReLu(implace = True)
            nn.Conv2d(channel//rate, channel, 1, bias = False)            
        )
        self.sig = nn.sigmoid()
    def forward(self, x):
        avg = sefl.avg_pool(x)
        avg_feature = self.fc1(avg)
        
        max = self.max_pool(x)
        max_feature = self.fc1(max)
        
        out = max_feature + avg_feature
        out = self.sig(out)
        return x * out
        

import torch
import torch.nn as nn

class SpatialAttention(nn.Module):
    def __init__(self):
        super(SpatialAttention, self).__init__()
        //(B,C,H,W)---(B,1,H,W)---(B,2,H,W)---(B,1,H,W)
        self.conv1 = nn.Conv2d(2, 1, kernel_size = 3, padding = 1, bias = False)
        self.sigmoid = nn.sigmoid()

    def forward(self, x):
        mean_f = torch.mean(x, dim = 1, keepdim = True)
        max_f = torch.max(x, dim = 1, keepdim = True).values
        cat = torch.cat([mean_f, max_f], dim = 1)
        out = self.conv1(cat)
        return x*self.sigmod(out)

三、transformer里的注意力机制 

Scaled Dot-Product Attention

该注意力机制的输入是QKV。

1.先Q,K相乘。

2.scale

3.softmax

4.求output

import torch
import torch.nn as nn

class ScaledDotProductAttention(nn.Module):
    def __init__(self, scale):
        super(ScaledDotProductAttention, self)
        self.scale = scale
        self.softmax = nn.softmax(dim = 2)
    
    def forward(self, q, k, v):
        u = torch.bmm(q, k.transpose(1, 2))
        u = u / scale
        attn = self.softmax(u)
        output = torch.bmm(attn, v)
        return output

scale = np.power(d_k, 0.5)  //缩放系数为K维度的根号。
//Q  (B, n_q, d_q) , K (B, n_k, d_k)  V (B, n_v, d_v),Q与K的特征维度一定要一样。KV的个数一定要一样。

 MultiHeadAttention

将QKVchannel维度转换为n*C的形式,相当于分成n份,分别做注意力机制。

1.QKV单头变多头  channel ----- n * new_channel通过linear变换,然后把head和batch先合并

2.求单头注意力机制输出

3.维度拆分   将最终的head和channel合并。

4.linear得到最终输出维度

import torch
import torch.nn as nn

class MultiHeadAttention(nn.Module):
    def __init__(self, n_head, d_k, d_k_, d_v, d_v_, d_o):
        super(MultiHeadAttention, self)
        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.fc_k = nn.Linear(d_k_, n_head * d_k)
        self.fc_v = nn.Linear(d_v_, n_head * d_v)
        self.fc_q = nn.Linear(d_k_, n_head * d_k)
        self.attention = ScaledDotProductAttention(scale=np.power(d_k, 0.5))
        self.fc_o = nn.Linear(n_head * d_v, d_0)
    
    def forward(self, q, k, v):
        batch, n_q, d_q_ = q.size()
        batch, n_k, d_k_ = k.size()
        batch, n_v, d_v_ = v.size()
        
        q = self.fc_q(q)
        k = self.fc_k(k)
        v = self.fc_v(v)
        
        q = q.view(batch, n_q, n_head, d_q).permute(2, 0, 1, 3).contiguous().view(-1, n_q, d_q)
        k = k.view(batch, n_k, n_head, d_k).permute(2, 0, 1, 3).contiguous().view(-1, n_k, d_k)
        v = v.view(batch, n_v, n_head, d_v).permute(2, 0, 1, 3).contiguous().view(-1. n_v, d_v)    
        output = self.attention(q, k, v)
        output = output.view(n_head, batch, n_q, d_v).permute(1, 2, 0, 3).contiguous().view(batch, n_q, -1)
        output = self.fc_0(output)
        return output

  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
SE注意力机制是一种通道注意力模块,常被应用于视觉模型中。它通过对输入特征图进行通道特征加强,而不改变输入特征图的大小。SE注意力模块主要由两部分组成:压缩和激励。首先,输入特征图的维度是H*W*C。然后,对输入特征图进行空间特征压缩,通过全局平均池化得到1*1*C的特征图。接下来,对压缩后的特征图进行通道特征学习,通过全连接层操作学习得到具有通道注意力的特征图,其维度仍为1*1*C。最后,将通道注意力的特征图1*1*C与原始输入特征图H*W*C逐通道乘以权重系数,最终输出具有通道注意力的特征图。 关于SE注意力机制代码解析,可以按照以下步骤进行实现: 1. 定义输入特征图,其维度为H*W*C。 2. 进行空间特征压缩,可以使用全局平均池化操作,得到1*1*C的特征图。 3. 对压缩后的特征图进行通道特征学习,可以使用全连接层操作,得到具有通道注意力的特征图,其维度为1*1*C。 4. 将通道注意力的特征图1*1*C与原始输入特征图H*W*C逐通道乘以权重系数,得到具有通道注意力的特征图作为最终输出。 这是一个简单的SE注意力机制代码实现思路,具体的实现方式可能会根据不同的框架和需求而有所不同。 #### 引用[.reference_title] - *1* *2* *3* [SE 注意力模块 原理分析与代码实现](https://blog.csdn.net/qq_41204464/article/details/126981314)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVplayer111

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值