背景
本文对点云分割和分类算法进行整理。参考文献为:
Grilli E, Menna F, Remondino F. A review of point clouds segmentation and classification algorithms[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 42: 339.
segmentation
基于边缘的分割算法(edge-based)
基于边缘的分割算法主要包括两步:
- 通过边缘检测找出不同区域的边界
- 对边界内的点进行聚类
### 区域生长分割算法(region growing)
该类算法从种子点云开始,利用领域点云信息(曲率、法矢)进行生长,被分为bottom-up法和top-down法。
通过模型拟合进行分割(model fitting)
由于许多人造物体可被分解为简单几何体,如圆柱、平面等,因此可利用简单几何体对点云进行拟合来达到分割的效果。两种被广泛应用的算法分别为Hough Transfom(HT)和RANSAC。
混合分割算法(Hybrid segmentation)
结合多种方法进行混合
机器学习分割算法(maching leaning)
该类分割算法基于机器学习方法,例如层次聚类、K均值和均值漂移法(mean shift)
classification
监督方法
该方法通过带有标签的数据进行学习,训练分类模型。
非监督方法
通过用户提供的特征进行自动分割,分割效果与期望可能不同。
交互式方法
用户参与到分类循环中,给算法提供反馈信号,可以提高算法效果。