论文标题:
HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention
论文作者:
Xiaolong Tang, Meina Kan, Shiguang Shan, Zhilong Ji, Jinfeng Bai, Xilin Chen
导读:
本文提出了一种动态轨迹预测方法,通过结合历史帧和历史预测结果来提高预测的稳定性和准确性。它引入了历史预测注意力模块,以编码连续预测之间的动态关系,并通过三重因子注意力模块实现了最先进的性能。本方法能够生成准确且稳定的未来轨迹,这对于自动驾驶系统落地至关重要。©️【深蓝AI】编译
1. 本文概要
在自动驾驶中,精确预测道路智能体的未来轨迹至关重要。现有的方法主要采用了一种静态的范式:通过固定长度的历史帧来预测未来的轨迹。然而,这些方法在相邻时间戳中独立进行预测,可能会引起预测的不稳定性和不一致性。考虑到连续时间戳中的历史轨迹大量重叠,预测结果应当展现出内在的相关性,例如,重叠的预测轨迹应保持一致,或者在不同的情况下,根据道路状况共享相同的运动目标。
基于这些考虑,作者提出了HPNet——一种创新的动态轨迹预测方法。为了确保轨迹预测的稳定性和准确性,我们的方法不仅利用了包括地图和智能体状态的历史帧,还考虑了历史预测结果。具体来说,我们设计了一个全新的历史预测注意力模块,用于自动捕捉连续预测之间的动态关系。此外,该模块通过利用历史预测,扩大了注意力的范围,使其超越了当前可见的窗口。
作者提出的历史预测注意力,结合智能体