机器人进化新篇章:CMU打造“变形金刚”级自适应机器人

论文标题:

Building Adaptable Generalist Robots

论文作者:

Mengdi Xu

在过去的十年中,深度学习在机器人的应用中进步显著。然而,这些机器人通常难以被推及使用在全新的、未见过的中,这表明着开发通用机器人方面的需求还有极大的提高空间。

虽然现有的研究主要通过大规模预训练来增强泛化——为机器人提供庞大的数据集和广泛的参数,并将泛化视为一种自然出现的特质——但这种方法并没有完全解决现实世界的复杂性。现实世界呈现出无限多的任务,其中许多任务超出了这些机器人以前遇到的训练场景的范围。例如,在医疗保健中,机器人必须管理由于患者多样化潜在意图导致的部分可观测性,这些在数据集中并未被覆盖。同样,自动驾驶车辆必须导航不可预测的交通、天气和道路条件,这些可能超出了训练数据的范围。

本文认为,除了可扩展性之外,强大的适应能力对于提高现实世界应用中的泛化至关重要。研究人员探索了构建能够在部署时有效适应的机器人的策略,重点关注数据效率、参数效率和鲁棒性。研究深入探讨了各种自适应学习方法,包括在有限数量的演示条件下的情境机器人学习、揭示机器人任务结构的无监督持续强化学习,以及使用大型基础模型构建具身代理。这些方法展示了巨大的潜力,使机器人能够在不同的应用中获得新的运动技能,并通过创造性地使用工具解决复杂、长期的物理难题。

在这里插入图片描述
▲图1 | 本文方法概述©️【深蓝AI】编译

1. 机器人适应性:面对现实挑战与技术需求的创新策略

现实世界是复杂多变的,机器人在实际应用中经常遇到未曾见过的任务。这些任务可能涉及新的环境、对象或目标,要求机器人能够快速学习和适应。然而,现有的算法往往在泛化能力上存在局限,难以应对这种不确定性。因此,如何提升机器人的适应性成为了人工智能领域的一个热点问题。

本文作者用少样本泛化来实现的Prompt-DT,即 Prompt-Decision Transformer。该方法利用Transformer架构的序列建模能力,通过少量的轨迹提示实现对新任务的快速适应。这种模型不需要在新任务上进行额外的微调,就能够生成适应新任务的策略。这一技术的关键在于,它将任务特定的信息编码在轨迹提示中,引导策略的生成。

在这里插入图片描述
▲图2 | Prompt-DT 少样本泛化生成©️【深蓝AI】编译

面对新任务,研究人员制定了快速调整策略的方式,具体而言,Hyper-Decision Transformer(HDT)给出了这一问题的答案。HDT通过在预训练的Transformer模型中引入适配器层,并使用超网络进行参数初始化,实现了对新任务的高效适应。这种参数高效的适应方法,不仅减少了计算成本,还显著提升了适应速度。

若要进行持续适应性学习,则需要应对非静态环境中的挑战。在非静态环境中,任务可能会随时间而变化。作者提出的在线模型基础强化学习方法,通过使用无限混合的高斯过程来表示系统动态,有效地处理了这一问题。该方法通过在线变分推断更新模型,同时通过合并和剪枝机制保持模型的稳定性和效率。

而面对不确定性的策略,鲁棒性评估至关重要。现实世界的高风险应用要求机器人策略不仅要高效,还要稳健。作者提出的群体分布鲁棒强化学习方法(GDR-MDP),通过考虑任务群体内的不确定性,生成了对信念估计误差更加稳健的策略。此外,针对罕见事件的评估方法,为安全关键系统的部署提供了重要保障。

基于语言提示的工具使用,作者创造了RoboTool的创造性应用,从而探索「如何利用大型基础模型解决多步骤物理难题」。RoboTool系统能够理解自然语言指令,并将其转化为控制机器人的可执行代码。这一系统不仅展示了工具选择、顺序使用工具和制造工具的创造性行为,还证明了机器人处理复杂任务的泛化能力。

2. 实验验证:从模拟到现实世界的跨越

本项研究的实验部分通过精心设计的测试流程,全面验证了所提出机器人适应性技术的有效性。

实验首先集中在评估Prompt-Decision Transformer(Prompt-DT)的少样本泛化能力:在MuJoCo控制任务上,Prompt-DT利用从专家演示中提取的简短轨迹提示,展现了在未见过的任务上进行快速适应的能力。实验结果显示,即使在只有少量轨迹提示的情况下,Prompt-DT也能在多个控制任务中实现与基线算法相比显著的性能提升,证明了其强大的泛化潜力。

在这里插入图片描述
▲图3 | 在测试分配任务的泛化能力时,培训和测试任务的索引©️【深蓝AI】编译

第二步实验则专注于Hyper-Decision Transformer(HDT)的在线策略适应性能:在Meta-World基准测试中,HDT通过超网络初始化适配器层,展现了在新任务上的快速适应能力。

实验设置了两种情况:一种是有专家动作的演示,另一种则没有。在两种情况下,HDT都显示出了优越的数据效率和参数效率。特别是在没有专家动作的挑战性环境中,HDT通过在线探索和适配器层的快速微调,实现了高达80%的成功率,显著超过了传统的微调整个模型的方法。这些实验不仅证明了HDT在参数和数据效率上的优势,也突显了其在处理现实世界任务时的潜力和鲁棒性。

此外,实验还包括了对持续适应性学习、鲁棒性评估以及基于语言提示的工具使用等方法的测试。这些实验在不同的环境和任务中进行,例如非静态的强化学习环境、具有潜在意图的复杂任务,以及需要创造性解决问题的场景。通过这些广泛的实验设置,作者的研究成果不仅在理论上得到了验证,而且在实际应用中的有效性和可靠性也得到了充分的展示。这些实验结果为机器人适应性技术的发展提供了有力的实证支持,并为未来的研究方向和技术进步奠定了坚实的基础。

3. 结论与展望

在未来的研究中,对进一步推动机器人适应性技术的发展,行业整体有这些指向:

首先是提高机器人对非专家演示的学习能力,使它们能够更有效地从人类的自然互动中学习;

其次是加强机器人在复杂物理交互中的适应性,通过更深层次的感知和理解来优化其与环境的互动;

再者是构建更加全面的评价基准,以更准确地评估机器人的泛化能力;

最后是确保机器人在与人类协作时的可靠性和安全性,这包括在高风险环境中的稳健决策和行为。

期望通过这些努力,机器人技术能够在更广泛的应用场景中发挥关键作用,与人类共同创造更加智能和可持续的未来。

编译|Scarlett

审核|Los

移步公众号【深蓝AI】,第一时间获取自动驾驶、人工智能与机器人行业最新最前沿论文和科技动态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值