论文标题:
Building Adaptable Generalist Robots
论文作者:
Mengdi Xu
在过去的十年中,深度学习在机器人的应用中进步显著。然而,这些机器人通常难以被推及使用在全新的、未见过的中,这表明着开发通用机器人方面的需求还有极大的提高空间。
虽然现有的研究主要通过大规模预训练来增强泛化——为机器人提供庞大的数据集和广泛的参数,并将泛化视为一种自然出现的特质——但这种方法并没有完全解决现实世界的复杂性。现实世界呈现出无限多的任务,其中许多任务超出了这些机器人以前遇到的训练场景的范围。例如,在医疗保健中,机器人必须管理由于患者多样化潜在意图导致的部分可观测性,这些在数据集中并未被覆盖。同样,自动驾驶车辆必须导航不可预测的交通、天气和道路条件,这些可能超出了训练数据的范围。
本文认为,除了可扩展性之外,强大的适应能力对于提高现实世界应用中的泛化至关重要。研究人员探索了构建能够在部署时有效适应的机器人的策略,重点关注数据效率、参数效率和鲁棒性。研究深入探讨了各种自适应学习方法,包括在有限数量的演示条件下的情境机器人学习、揭示机器人任务结构的无监督持续强化学习,以及使用大型基础模型构建具身代理。这些方法展示了巨大的潜力,使机器人能够在不同的应用中获得新的运动技能,并通过创造性地使用工具解决复杂、长期的物理难题。
▲图1 | 本文方法概述©️【深蓝AI】编译
1. 机器人适应性:面对现实挑战与技术需求的创新策略
现实世界是复杂